亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

java線性規劃問題舉例分析

發布時間:2021-11-24 14:01:49 來源:億速云 閱讀:236 作者:iii 欄目:大數據

這篇文章主要講解了“java線性規劃問題舉例分析”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“java線性規劃問題舉例分析”吧!

由于我后臺是springcloud,所以我調查到兩種實現方式。

第一種是運用python的scipy開源庫寫一個python腳本,然后java后臺調用python腳本,求最優解,然后再將結果返回。

第二種是運用java中ibm組件Cplex直接求解,但分為收費和免費版,免費版決策變量限制為1000個,但也夠了。找jar包和dll費勁點。

發現他們倆算出來的最優解是相同的,但各個決策變量不太相同。

這里記錄一下運用java中ibm組件Cplex求解的方法。

首先看一下官方說明,免費版本的限制。

java線性規劃問題舉例分析

申請下載免費版本的時候,要先注冊一下填一些信息,然后會把下載地址發送到申請時的郵箱中,可以下載win、linux、macos版本。

java線性規劃問題舉例分析

這個安裝完之后是一個ide開發工具CPLEX_Studio,由于我是用idea開發的,所以還要配置如下的步驟:

CPLEX_Studio安裝完以后,安裝目錄下會有一個jar包,需要導入到我們的idea中,我是將jar包導入到我本地maven倉庫中,用pom引入的:

CPLEX_Studio中jar包的位置:
D:\CPLEX_Studio_Community201\cplex\lib\cplex.jar
mvn install:install-file -Dfile=D:\CPLEX_Studio_Community201\cplex\lib\cplex.jar -DgroupId=cplex -DartifactId=cplex -Dversion=20.1.0.0.R1 -Dpackaging=jar
<dependency>
    <groupId>cplex</groupId>
    <artifactId>cplex</artifactId>
    <version>20.1.0.0.R1</version>
</dependency>

然后在我們的啟動項目時還要加入java.library.path參數,指定CPLEX運行庫:

-Djava.library.path="D:\CPLEX_Studio_Community201\cplex\bin\x64_win64"

我在開發中是直接idea配置的:

java線性規劃問題舉例分析

之后就可以愉快的使用了。

我項目中的不等式方程組是∑求和形式的,這里就手動打碼先假設決策變量的數量為 5 * 3 個,經過化簡后得到多元一次不等式組如下:

求解最大值 = AX + AY + AZ + BX + BY + BZ + CX + CY + CZ + DX + DY + DZ + EX + EY + EZ

AX + AY + AZ <= 25400
BX + BY + BZ <= 18600
CX + CY + CZ <= 39800
DX + DY + DZ <= 53200
EX + EY + EZ <= 5900

AX + AY + AZ <= 10000
BX + BY + BZ <= 10000
CX + CY + CZ <= 10000
DX + DY + DZ <= 10000
EX + EY + EZ <= 10000

AX + BX + CX + DX + EX >= 15000
AY + BY + CY + DY + DY >= 5000
AZ + BZ + CZ + DZ + DZ >= 10000

(50.25-50)*AX + (49.86-50)*BX + (68.80-50)*CX + (49.79-50)*DX + (48.77-50)*EX >= 0
(50.25-60)*AY + (49.86-60)*BY + (68.80-60)*CY + (49.79-60)*DY + (48.77-60)*EY >= 0
(50.25-55)*AZ + (49.86-55)*BZ + (68.80-55)*CZ + (49.79-55)*DZ + (48.77-55)*DZ >= 0

(30.95*(1-2/100)-30)*AX + (31.52*(1-3/100)-30)*BX + (30.58*(1-1/100)-30)*CX + (30.17*(1-1/100)-30)*DX + (27.83*(1-1/100)-30)*EX >= 0
(30.95*(1-2/100)-30)*AY + (31.52*(1-3/100)-30)*BY + (30.58*(1-1/100)-30)*CY + (30.17*(1-1/100)-30)*DY + (27.83*(1-1/100)-30)*EY >= 0
(30.95*(1-2/100)-30)*AZ + (31.52*(1-3/100)-30)*BZ + (30.58*(1-1/100)-30)*CZ + (30.17*(1-1/100)-30)*DZ + (27.83*(1-1/100)-30)*EZ >= 0

(11.32*(1-2/100)-10)*AX + (12.83*(1-3/100)-10)*BX + (16.06*(1-1/100)-10)*CX + (5.68*(1-1/100)-10)*DX + (8.54*(1-1/100)-10)*EX >= 0
(11.32*(1-2/100)-10)*AY + (12.83*(1-3/100)-10)*BY + (16.06*(1-1/100)-10)*CY + (5.68*(1-1/100)-10)*DY + (8.54*(1-1/100)-10)*EY >= 0
(11.32*(1-2/100)-10)*AZ + (12.83*(1-3/100)-10)*BZ + (16.06*(1-1/100)-10)*CZ + (5.68*(1-1/100)-10)*DZ + (8.54*(1-1/100)-10)*EZ >= 0

(6*(1-2/100)-5)*AX + (4*(1-3/100)-5)*BX + (5*(1-1/100)-5)*CX + (2*(1-1/100)-5)*DX + (5*(1-1/100)-5)*EX <= 0
(6*(1-2/100)-5)*AY + (4*(1-3/100)-5)*BY + (5*(1-1/100)-5)*CY + (2*(1-1/100)-5)*DY + (5*(1-1/100)-5)*EY <= 0
(6*(1-2/100)-5)*AZ + (4*(1-3/100)-5)*BZ + (5*(1-1/100)-5)*CZ + (2*(1-1/100)-5)*DZ + (5*(1-1/100)-5)*EZ <= 0

非負約束:
AX,AY,AZ,BX,BY,BZ,CX,CY,CZ,DX,DY,DZ,EX,EY,EZ >= 0

上面這些是根據我自己的項目得到的不等式組,可以根據自己的項目來做相應改動。

try {
	// creat a model
	IloCplex cplex = new IloCplex();

	// 變量的取值范圍
	double[] lb = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
	double[] ub = {10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000};
	IloNumVar[] x = cplex.numVarArray(15, lb, ub);

	// 求解目標
	double[] objvals = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
	cplex.addMaximize(cplex.scalProd(x, objvals));

	// 不等式約束
	cplex.addLe(cplex.scalProd(x, new double[]{1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), 25400);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}), 18600);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}), 39800);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0}), 53200);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1}), 5900);

	cplex.addLe(cplex.scalProd(x, new double[]{1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), 10000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}), 10000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}), 10000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0}), 10000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1}), 10000);

	cplex.addLe(cplex.scalProd(x, new double[]{1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), 20000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}), 20000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}), 20000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0}), 20000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1}), 20000);

	cplex.addLe(cplex.scalProd(x, new double[]{-1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}), -15000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0}), -5000);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1}), -10000);

	cplex.addLe(cplex.scalProd(x, new double[]{50 - 50.25, 0, 0, 50 - 49.86, 0, 0, 50 - 68.80, 0, 0, 50 - 49.79, 0, 0, 50 - 48.77, 0, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 60 - 50.25, 0, 0, 60 - 49.86, 0, 0, 60 - 68.80, 0, 0, 60 - 49.79, 0, 0, 60 - 48.77, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 55 - 50.25, 0, 0, 55 - 49.86, 0, 0, 55 - 68.80, 0, 0, 55 - 49.79, 0, 0, 55 - 48.77}), 0);

	cplex.addLe(cplex.scalProd(x, new double[]{30 - 30.95 * 0.98, 0, 0, 30 - 31.52 * 0.97, 0, 0, 30 - 30.58 * 0.99, 0, 0, 30 - 30.17 * 0.99, 0, 0, 30 - 27.83 * 0.99, 0, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 30 - 30.95 * 0.98, 0, 0, 30 - 31.52 * 0.97, 0, 0, 30 - 30.58 * 0.99, 0, 0, 30 - 30.17 * 0.99, 0, 0, 30 - 27.83 * 0.99, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 30 - 30.95 * 0.98, 0, 0, 30 - 31.52 * 0.97, 0, 0, 30 - 30.58 * 0.99, 0, 0, 30 - 30.17 * 0.99, 0, 0, 30 - 27.83 * 0.99}), 0);

	cplex.addLe(cplex.scalProd(x, new double[]{10 - 11.32 * 0.98, 0, 0, 10 - 12.83 * 0.97, 0, 0, 10 - 16.06 * 0.99, 0, 0, 10 - 5.68 * 0.99, 0, 0, 10 - 8.54 * 0.99, 0, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 10 - 11.32 * 0.98, 0, 0, 10 - 12.83 * 0.97, 0, 0, 10 - 16.06 * 0.99, 0, 0, 10 - 5.68 * 0.99, 0, 0, 10 - 8.54 * 0.99, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 10 - 11.32 * 0.98, 0, 0, 10 - 12.83 * 0.97, 0, 0, 10 - 16.06 * 0.99, 0, 0, 10 - 5.68 * 0.99, 0, 0, 10 - 8.54 * 0.99}), 0);

	cplex.addLe(cplex.scalProd(x, new double[]{6 * 0.98 - 5, 0, 0, 4 * 0.97 - 5, 0, 0, 5 * 0.99 - 5, 0, 0, 2 * 0.99 - 5, 0, 0, 5 * 0.99 - 5, 0, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 6 * 0.98 - 5, 0, 0, 4 * 0.97 - 5, 0, 0, 5 * 0.99 - 5, 0, 0, 2 * 0.99 - 5, 0, 0, 5 * 0.99 - 5, 0}), 0);
	cplex.addLe(cplex.scalProd(x, new double[]{0, 0, 6 * 0.98 - 5, 0, 0, 4 * 0.97 - 5, 0, 0, 5 * 0.99 - 5, 0, 0, 2 * 0.99 - 5, 0, 0, 5 * 0.99 - 5}), 0);

	if (cplex.solve()) {
		cplex.output().println("Solution status = " + cplex.getStatus());
		cplex.output().println("Solution value = " + cplex.getObjValue());
		double[] val = cplex.getValues(x);
		for (int j = 0; j < val.length; j++) {
			cplex.output().println("x" + (j+1) + "  = " + val[j]);
		}
	}
	cplex.end();

} catch (Exception e) {
	System.err.println("Concert exception caught: " + e);
}

//        Iteration log . . .
//        Iteration:     1   Dual objective     =         99025.641026
//        Solution status = Optimal
//        Solution value = 44280.112731282905
//        x1  = 4022.4510446323093
//        x2  = 0.0
//        x3  = 5977.548955367691
//        x4  = 10000.0
//        x5  = 0.0
//        x6  = 0.0
//        x7  = 211.60418010554542
//        x8  = 3814.5789532616586
//        x9  = 5973.816866632794
//        x10  = 0.0
//        x11  = 801.3074331974203
//        x12  = 9198.69256680258
//        x13  = 2913.635241579134
//        x14  = 384.1136135409201
//        x15  = 982.3638761628501
//        [INFO] ------------------------------------------------------------------------
//        [INFO] BUILD SUCCESS
//        [INFO] ------------------------------------------------------------------------
//        [INFO] Total time:  2.757 s
//        [INFO] Finished at: 2021-04-12T09:58:14+08:00
//        [INFO] ------------------------------------------------------------------------

感謝各位的閱讀,以上就是“java線性規劃問題舉例分析”的內容了,經過本文的學習后,相信大家對java線性規劃問題舉例分析這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

宝坻区| 崇文区| 三穗县| 东乌| 涞水县| 阿克苏市| 林甸县| 塘沽区| 德昌县| 蓬莱市| 三明市| 乐安县| 吉隆县| 贵港市| 卓资县| 资兴市| 东宁县| 阜南县| 长阳| 亳州市| 英山县| 荣昌县| 涞源县| 萝北县| 来宾市| 临潭县| 正蓝旗| 宜兰市| 三都| 乌拉特后旗| 荥阳市| 定安县| 顺义区| 大姚县| 宁津县| 桦川县| 洛扎县| 桐柏县| 额尔古纳市| 花莲市| 建湖县|