您好,登錄后才能下訂單哦!
這篇文章將為大家詳細講解有關如何進行Java消息隊列的總結分析,文章內容質量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。
一、消息隊列概述
消息隊列中間件是分布式系統中重要的組件,主要解決應用解耦,異步消息,流量削鋒等問題,實現高性能,高可用,可伸縮和最終一致性架構。目前使用較多的消息隊列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ。
二、消息隊列應用場景
以下介紹消息隊列在實際應用中常用的使用場景。異步處理,應用解耦,流量削鋒和消息通訊四個場景。
2.1異步處理
場景說明:用戶注冊后,需要發注冊郵件和注冊短信。傳統的做法有兩種 1.串行的方式;2.并行方式
a、串行方式:將注冊信息寫入數據庫成功后,發送注冊郵件,再發送注冊短信。以上三個任務全部完成后,返回給客戶端。
b、并行方式:將注冊信息寫入數據庫成功后,發送注冊郵件的同時,發送注冊短信。以上三個任務完成后,返回給客戶端。與串行的差別是,并行的方式可以提高處理的時間
假設三個業務節點每個使用50毫秒鐘,不考慮網絡等其他開銷,則串行方式的時間是150毫秒,并行的時間可能是100毫秒。
因為CPU在單位時間內處理的請求數是一定的,假設CPU1秒內吞吐量是100次。則串行方式1秒內CPU可處理的請求量是7次(1000/150)。并行方式處理的請求量是10次(1000/100)
小結:如以上案例描述,傳統的方式系統的性能(并發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?
引入消息隊列,將不是必須的業務邏輯,異步處理。改造后的架構如下:
按照以上約定,用戶的響應時間相當于是注冊信息寫入數據庫的時間,也就是50毫秒。注冊郵件,發送短信寫入消息隊列后,直接返回,因此寫入消息隊列的速度很快,基本可以忽略,因此用戶的響應時間可能是50毫秒。因此架構改變后,系統的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了兩倍。
2.2應用解耦
場景說明:用戶下單后,訂單系統需要通知庫存系統。傳統的做法是,訂單系統調用庫存系統的接口。如下圖:
傳統模式的缺點:假如庫存系統無法訪問,則訂單減庫存將失敗,從而導致訂單失敗,訂單系統與庫存系統耦合
如何解決以上問題呢?引入應用消息隊列后的方案,如下圖:
訂單系統:用戶下單后,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功
庫存系統:訂閱下單的消息,采用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操作
假如:在下單時庫存系統不能正常使用。也不影響正常下單,因為下單后,訂單系統寫入消息隊列就不再關心其他的后續操作了。實現訂單系統與庫存系統的應用解耦
2.3流量削峰
流量削鋒也是消息隊列中的常用場景,一般在秒殺或團搶活動中使用廣泛。
應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入消息隊列。
a、可以控制活動的人數
b、可以緩解短時間內高流量壓垮應用
用戶的請求,服務器接收后,首先寫入消息隊列。假如消息隊列長度超過***數量,則直接拋棄用戶請求或跳轉到錯誤頁面。
秒殺業務根據消息隊列中的請求信息,再做后續處理。
2.4日志處理
日志處理是指將消息隊列用在日志處理中,比如Kafka的應用,解決大量日志傳輸的問題。架構簡化如下:
日志采集客戶端,負責日志數據采集,定時寫受寫入Kafka隊列。
Kafka消息隊列,負責日志數據的接收,存儲和轉發。
日志處理應用:訂閱并消費kafka隊列中的日志數據。
2.5消息通訊
消息通訊是指,消息隊列一般都內置了高效的通信機制,因此也可以用在純的消息通訊。比如實現點對點消息隊列,或者聊天室等。
點對點通訊:
客戶端A和客戶端B使用同一隊列,進行消息通訊。
聊天室通訊:
客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發布和接收。實現類似聊天室效果。
以上實際是消息隊列的兩種消息模式,點對點或發布訂閱模式。模型為示意圖,供參考。
三、消息中間件示例
3.1電商系統
消息隊列采用高可用,可持久化的消息中間件。比如Active MQ,Rabbit MQ,Rocket Mq。
應用將主干邏輯處理完成后,寫入消息隊列。消息發送是否成功可以開啟消息的確認模式。(消息隊列返回消息接收成功狀態后,應用再返回,這樣保障消息的完整性)
擴展流程(發短信,配送處理)訂閱隊列消息。采用推或拉的方式獲取消息并處理。
消息將應用解耦的同時,帶來了數據一致性問題,可以采用最終一致性方式解決。比如主數據寫入數據庫,擴展應用根據消息隊列,并結合數據庫方式實現基于消息隊列的后續處理。
3.2日志收集系統
分為Zookeeper注冊中心,日志收集客戶端,Kafka集群和Storm集群(OtherApp)四部分組成。
Zookeeper注冊中心,提出負載均衡和地址查×××
日志收集客戶端,用于采集應用系統的日志,并將數據推送到kafka隊列
Kafka集群:接收,路由,存儲,轉發等消息處理
Storm集群:與OtherApp處于同一級別,采用拉的方式消費隊列中的數據
MQ選型對比文檔
綜合選擇RabbitMq
Kafka是linkedin開源的MQ系統,主要特點是基于Pull的模式來處理消息消費,追求高吞吐量,一開始的目的就是用于日志收集和傳輸,0.8開始支持復制,不支持事務,適合產生大量數據的互聯網服務的數據收集業務。
RabbitMQ是使用Erlang語言開發的開源消息隊列系統,基于AMQP協議來實現。AMQP的主要特征是面向消息、隊列、路由(包括點對點和發布/訂閱)、可靠性、安全。AMQP協議更多用在企業系統內,對數據一致性、穩定性和可靠性要求很高的場景,對性能和吞吐量的要求還在其次。
RocketMQ是阿里開源的消息中間件,它是純Java開發,具有高吞吐量、高可用性、適合大規模分布式系統應用的特點。RocketMQ思路起源于Kafka,但并不是Kafka的一個Copy,它對消息的可靠傳輸及事務性做了優化,目前在阿里集團被廣泛應用于交易、充值、流計算、消息推送、日志流式處理、binglog分發等場景。
ZeroMQ只是一個網絡編程的Pattern庫,將常見的網絡請求形式(分組管理,鏈接管理,發布訂閱等)模式化、組件化,簡而言之socket之上、MQ之下。對于MQ來說,網絡傳輸只是它的一部分,更多需要處理的是消息存儲、路由、Broker服務發現和查找、事務、消費模式(ack、重投等)、集群服務等。
RabbitMQ/Kafka/ZeroMQ 都能提供消息隊列服務,但有很大的區別。
在面向服務架構中通過消息代理(比如 RabbitMQ / Kafka等),使用生產者-消費者模式在服務間進行異步通信是一種比較好的思想。
因為服務間依賴由強耦合變成了松耦合。消息代理都會提供持久化機制,在消費者負載高或者掉線的情況下會把消息保存起來,不會丟失。就是說生產者和消費者不需要同時在線,這是傳統的請求-應答模式比較難做到的,需要一個中間件來專門做這件事。其次消息代理可以根據消息本身做簡單的路由策略,消費者可以根據這個來做負載均衡,業務分離等。
缺點也有,就是需要額外搭建消息代理集群(但優點是大于缺點的 ) 。
ZeroMQ 和 RabbitMQ/Kafka 不同,它只是一個異步消息庫,在套接字的基礎上提供了類似于消息代理的機制。使用 ZeroMQ 的話,需要對自己的業務代碼進行改造,不利于服務解耦。
RabbitMQ 支持 AMQP(二進制),STOMP(文本),MQTT(二進制),HTTP(里面包裝其他協議)等協議。Kafka 使用自己的協議。
Kafka 自身服務和消費者都需要依賴 Zookeeper。
RabbitMQ 在有大量消息堆積的情況下性能會下降,Kafka不會。畢竟AMQP設計的初衷不是用來持久化海量消息的,而Kafka一開始是用來處理海量日志的。
總的來說,RabbitMQ 和 Kafka 都是十分優秀的分布式的消息代理服務,只要合理部署,不作,基本上可以滿足生產條件下的任何需求。
關于如何進行Java消息隊列的總結分析就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。