您好,登錄后才能下訂單哦!
這篇文章主要講解了“如何使用.NET 5”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“如何使用.NET 5”吧!
.NET 5 旨在提供統一的運行時和框架,使其在各平臺都有統一的運行時行為和開發體驗。微軟發布了與 .NET 協作的大數據(.NET for Spark)和機器學習(ML.NET)工具,這些工具共同提供了富有成效的端到端體驗。在本文中,我們將介紹 .NET for Spark、大數據、ML.NET 和機器學習的基礎知識,我們將研究其 API 和功能,向你展示如何開始構建和消費你自己的 Spark 作業和 ML.NET 模型。
什么是大數據
大數據是一個幾乎不言自明的行業術語。該術語指的是大型數據集,通常涉及 TB 甚至 PB 級的信息,這些數據集被用作分析的輸入,以揭示數據中的模式和趨勢。大數據與傳統工作負載之間的關鍵區別在于,大數據往往過于龐大、復雜或多變,傳統數據庫和應用程序無法處理。一種流行的數據分類方式被稱為 "3V"(譯注:即3個V,Volume 容量、Velocity 速度、Variety 多樣性)。
大數據解決方案是為適應高容量、處理復雜多樣的數據結構而定制的,并通過批處理(靜態)和流處理(動態)來管理速度。
大多數大數據解決方案都提供了在數據倉庫中存儲數據的方式,數據倉庫通常是一個為快速檢索和為并行處理而優化的分布式集群。處理大數據往往涉及多個步驟,如下圖所示:
.NET 5 開發人員如果需要基于大型數據集進行分析和洞察,可以使用基于流行的大數據解決方案 Apache Spark 的 .NET 實現:.NET for Spark。
.NET for Spark
.NET for Spark 基于 Apache Spark,這是一個用于處理大數據的開源分析引擎。它被設計為在內存中處理大量數據,以提供比其他依賴持久化存儲的解決方案更好的性能。它是一個分布式系統,并行處理工作負載。它為加載數據、查詢數據、處理數據和輸出數據提供支持。
Apache Spark 支持 Java、Scala、Python、R 和 SQL。微軟創建了 .NET for Spark 以增加對 .NET 的支持。該解決方案提供了免費、開放、跨平臺的工具,用于使用 .NET 所支持的語言(如 C#和 F#)構建大數據應用程序,這樣你就可以使用現有的 .NET 庫,同時利用 SparkSQL 等 Spark 特性。
以下代碼展示了一個小而完整的 .NET for Spark 應用程序,它讀取一個文本文件并按降序輸出字數。
using Microsoft.Spark.Sql; namespace MySparkApp { class Program { static void Main(string[] args) { // Create a Spark session. SparkSession spark = SparkSession.Builder().AppName("word_count_sample").GetOrCreate(); // Create initial DataFrame. DataFrame dataFrame = spark.Read().Text("input.txt"); // Count words. DataFrame words = dataFrame.Select(Functions.Split(Functions.Col("value"), " ").Alias("words")) .Select(Functions.Explode(Functions .Col("words")) .Alias("word")) .GroupBy("word") .Count() .OrderBy(Functions.Col("count").Desc()); // Show results. words.Show(); // Stop Spark session. spark.Stop(); } } }
在開發機器上配置 .NET for Spark 需要安裝幾個依賴,包括 Java SDK 和 Apache Spark。你可以在這里(https://aka.ms/go-spark-net)查看手把手的入門指南。
Spark for .NET 可在多種環境中運行,并可部署到云中運行。可部署目標包括 Azure HDInsight、Azure Synapse、AWS EMR Spark 和 Databricks 等。如果數據作為項目可用的一部分,你可以將其與其他 project 文件一起提交。
大數據通常與機器學習一起使用,以獲得關于數據的洞察。
什么是機器學習
首先,我們先來介紹一下人工智能和機器學習的基本知識。
人工智能(AI)是指計算機模仿人類智慧和能力,如推理和尋找意義。典型的人工智能技術通常是從規則或邏輯系統開始的。作為一個簡單的例子,想一想這樣的場景:你想把某樣東西分類為“面包”或“不是面包”。當你開始時,這似乎是一個簡單的問題,例如“如果它有眼睛,它就不是面包”。然而,你很快就會開始意識到,有很多不同的特征可以將某物定性為面包與非面包,而且特征越多,一系列的 if 語句就會越長越復雜,如下圖所示:
從上圖中的例子可以看出,傳統的、基于規則的人工智能技術往往難以擴展。這就是機器學習的作用。機器學習(ML)是人工智能的一個子集,它能在過去的數據中找到模式,并從經驗中學習,以對新數據采取行動。ML 允許計算機在沒有明確的邏輯規則編程的情況下進行預測。因此,當你有一個難以(或不可能)用基于規則的編程解決的問題時,你可以使用 ML。你可以把 ML 看作是 "對不可編程的編程"。
為了用 ML 解決“面包”與“非面包”的問題,你提供面包的例子和非面包的例子(如下圖所示),而不是實現一長串復雜的 if 語句。你將這些例子傳遞給一個算法,該算法在數據中找到模式,并返回一個模型,然后你可以用這個模型來預測尚未被模型“看到”的圖像是“面包”還是“不是面包”。
上圖展示了 AI 與 ML 的另一種思考方式。AI 將規則和數據作為輸入,預期輸出基于這些規則的答案。而 ML 則是將數據和答案作為輸入,輸出可用于對新數據進行歸納的規則。
AI 將規則和數據作為輸入,并根據這些規則輸出預期的答案。ML 將數據和答案作為輸入,并輸出可用于概括新數據的規則。
ML.NET
微軟在 2019 年 5 月的 Build 上發布了 ML.NET,這是一個面向.NET 開發人員的開源、跨平臺 ML 框架。在過去的九年里,微軟的團隊已經廣泛使用該框架的內部版本來實現流行的 ML 驅動功能;一些例子包括 Dynamics 365 欺詐檢測、PowerPoint 設計理念和 Microsoft Defender 防病毒威脅保護。
ML.NET 允許你在.NET 生態系統中構建、訓練和消費 ML 模型,而不需要 ML 或數據科學的背景。ML.NET 可以在任何.NET 運行的地方運行。Windows、Linux、macOS、on-prem、離線場景(如 WinForms 或 WPF 桌面應用)或任何云端(如 Azure)中。你可以將 ML.NET 用于各種場景,如表 1 所述。
ML.NET 使用自動機器學習(或稱 AutoML)來自動構建和訓練 ML 模型的過程,以根據提供的場景和數據找到最佳模型。你可以通過 AutoML.NET API 或 ML.NET 工具來使用 ML.NET 的 AutoML,其中包括 Visual Studio 中的 Model Builder 和跨平臺的 ML.NET CLI,如圖 6 所示。除了訓練最佳模型外,ML.NET 工具還生成在最終用戶.NET 應用程序中消費模型所需的文件和 C#代碼,該應用程序可以是任何.NET 應用程序(桌面、Web、控制臺等)。所有 AutoML 方案都提供了本地訓練選項,圖像分類也允許你利用云的優勢,使用 Model Builder 中的 Azure ML 進行訓練。
你可以在 Microsoft Docs 中了解更多關于 ML.NET 的信息,網址是:https://aka.ms/mlnetdocs。
ML 和大數據結合
大數據和 ML 可以很好地結合在一起。讓我們構建一個同時使用 Spark for .NET 和 ML.NET 的管道,以展示大數據和 ML 如何一起工作。Markdown 是一種用于編寫文檔和創建靜態網站的流行語言,它使用的語法不如 HTML 復雜,但提供的格式控制比純文本更多。這是從 .NET 文檔庫中的摘取一段 markdown 文件內容:
--- title: Welcome to .NET description: Getting started with the .NET family of technologies. ms.date: 12/03/2019 ms.custom: "updateeachrelease" --- # Welcome to .NET See [Get started with .NET Core](core/get-started.md) to learn how to create .NET Core apps. Build many types of apps with .NET, such as cloud ,IoT, and games using free cross-platform tools...
破折號之間的部分稱為前頁(front matter),是使用 YAML 描述的有關文檔的元數據。以井號(#)開頭的部分是標題。兩個哈希(##)表示二級標題。“ .NET Core 入門”是一個超鏈接。
我們的目標是處理大量文檔,添加諸如字數和估計的閱讀時間之類的元數據,并將相似的文章自動分組在一起。
這是我們將構建的管道:
為每個文檔建立字數統計;
估計每個文檔的閱讀時間;
根據“ TF-IDF”或“術語頻率/反向文檔頻率”為每個文檔創建前 20 個單詞的列表(這將在后面說明)。
第一步是拉取文檔存儲庫和需引用的應用程序。你可以使用任何包含 Markdown 文件的存儲庫及文件夾結構。本文使用的示例來自 .NET 文檔存儲庫,可從 https://aka.ms/dot-net-docs 克隆。
為.NET 和 Spark 準備本地環境之后,可以從https://aka.ms/spark-ml-example拉取項目。
解決方案文件夾包含一個批處理命令(在倉庫中有提供),你可以使用該命令來運行所有步驟。
處理 Markdown
DocRepoParser 項目以遞歸方式遍歷存儲庫中的子文件夾,以收集各文檔有關的元數據。Common 項目包含幾個幫助程序類。例如,FilesHelper 用于所有文件 I/O。它跟蹤存儲文件和文件名的位置,并提供諸如為其他項目讀取文件的服務。構造函數需要一個標簽(一個唯一標識工作流的數字)和包含文檔的 repo 或頂級文件夾的路徑。默認情況下,它在用戶的本地應用程序數據文件夾下創建一個文件夾。如有必要,可以將其覆蓋。
MarkdownParser利用 Microsoft.Toolkit.Parsers解析 Markdown 的庫。該庫有兩個任務:首先,它必須提取標題和子標題;其次,它必須提取單詞。Markdown 文件以 "塊 "的形式暴露出來,代表標題、鏈接和其他 Markdown 特征。塊又包含承載文本的“Inlines”。例如,這段代碼通過迭代行和單元格來解析一個 TableBlock,以找到 Inlines。
case TableBlock table: table.Rows.SelectMany(r => r.Cells) .SelectMany(c => c.Inlines) .ForEach(i => candidate = RecurseInline(i, candidate, words, titles)); break;
此代碼提取超鏈接的文本部分:
case HyperlinkInline hyper: if (!string.IsNullOrWhiteSpace(hyper.Text)) { words.Append(hyper.Text.ExtractWords()); } break;
結果是一個 CSV 文件,如下圖所示:
第一步只是準備要處理的數據。下一步使用 Spark for .NET 作業確定每個文檔的字數,閱讀時間和前 20 個術語。
構建 Spark Job
SparkWordsProcessor項目用來運行 Spark 作業。雖然該應用程序是一個控制臺項目,但它需要 Spark 來運行。runjob.cmd批處理命令將作業提交到正確配置的 Windows 計算機上運行。典型作業的模式是創建一個會話或“應用程序”,執行一些邏輯,然后停止會話。
var spark = SparkSession.Builder() .AppName(nameof(SparkWordsProcessor)) .GetOrCreate(); RunJob(); spark.Stop();
通過將其路徑傳遞給 Spark 會話,可以輕松讀取上一步的文件。
var docs = spark.Read().HasHeader().Csv(filesHelper.TempDataFile); docs.CreateOrReplaceTempView(nameof(docs)); var totalDocs = docs.Count();
docs變量解析為一個DataFrame。Data Frame 本質上是一個帶有一組列和一個通用接口的表,用于與數據交互,而不管其底層來源是什么。可以從其他 data frame 中引用一個 data frame。SparkSQL 也可以用來查詢 data frame。你必須創建一個臨時視圖,該視圖為 data frame 提供別名,以便從 SQL 中引用它。通過CreateOrReplaceTempView方法,可以像這樣從 data frame 中查詢行:
SELECT * FROM docs
totalDocs變量檢索文檔中所有行的計數。Spark 提供了一個名為Split的將字符串分解為數組的函數。Explode函數將每個數組項變成一行:
var words = docs.Select(fileCol, Functions.Split(nameof(FileDataParse.Words) .AsColumn(), " ") .Alias(wordList)) .Select(fileCol, Functions.Explode(wordList.AsColumn()) .Alias(word));
該查詢為每個單詞或術語生成一行。這個 data frame 是生成術語頻率(TF)或者說每個文檔中每個詞的計數的基礎。
var termFrequency = words .GroupBy(fileCol, Functions.Lower(word.AsColumn()).Alias(word)) .Count() .OrderBy(fileCol, count.AsColumn().Desc());
Spark 有內置的模型,可以確定“術語頻率/反向文檔頻率”。在這個例子中,你將手動確定術語頻率來演示它是如何計算的。術語在每個文檔中以特定的頻率出現。一篇關于 wizard 的文檔可能有很高的“wizard”一詞計數。同一篇文檔中,"the "和 "is "這兩個詞的出現次數可能也很高。對我們來說,很明顯,“wizard”這個詞更重要,也提供了更多的語境。另一方面,Spark 必須經過訓練才能識別重要的術語。為了確定什么是真正重要的,我們將總結文檔頻率(document frequency),或者說一個詞在 repo 中所有文檔中出現的次數。這就是“按不同出現次數分組”:
var documentFrequency = words .GroupBy(Functions.Lower(word.AsColumn()) .Alias(word)) .Agg(Functions.CountDistinct(fileCol) .Alias(docFrequency));
現在是計算的時候了。一個特殊的方程式可以計算出所謂的反向文檔頻率(inverse document frequency),即 IDF。將總文檔的自然對數(加一)輸入方程,然后除以該詞的文檔頻率(加一)。
static double CalculateIdf(int docFrequency, int totalDocuments) => Math.Log(totalDocuments + 1) / (docFrequency + 1);
在所有文檔中出現的詞比出現頻率較低的詞賦值低。例如,給定 1000 個文檔,一個在每個文檔中出現的詞與一個只在少數文檔中出現的詞(約 1 個)相比,IDF 為 0.003。Spark 支持用戶定義的函數,你可以這樣注冊。
spark.Udf().Register<int, int, double>(nameof(CalculateIdf), CalculateIdf);
接下來,你可以使用該函數來計算 data frame 中所有單詞的 IDF:
var idfPrep = documentFrequency.Select(word.AsColumn(), docFrequency.AsColumn()) .WithColumn(total, Functions.Lit(totalDocs)) .WithColumn(inverseDocFrequency, Functions.CallUDF(nameof(CalculateIdf), docFrequency.AsColumn(), total.AsColumn() ) );
使用文檔頻率 data frame,增加兩列。第一列是文檔的單詞總數量,第二列是調用你的 UDF 來計算 IDF。還有一個步驟,就是確定“重要詞”。重要詞是指在所有文檔中不經常出現,但在當前文檔中經常出現的詞,用 TF-IDF 表示,這只是 IDF 和 TF 的產物。考慮“is”的情況,IDF 為 0.002,在文檔中的頻率為 50,而“wizard”的 IDF 為 1,頻率為 10。相比頻率為 10 的“wizard”,“is”的 TF-IDF 計算結果為 0.1。這讓 Spark 對重要性有了更好的概念,而不僅僅是原始字數。
到目前為止,你已經使用代碼來定義 data frame。讓我們嘗試一下 SparkSQL。為了計算 TF-IDF,你將文檔頻率 data frame 與反向文檔頻率 data frame 連接起來,并創建一個名為termFreq_inverseDocFreq的新列。下面是 SparkSQL:
var idfJoin = spark.Sql($"SELECT t.File, d.word, d.{docFrequency}, d.{inverseDocFrequency}, t.count, d.{inverseDocFrequency} * t.count as {termFreq_inverseDocFreq} from {nameof(documentFrequency)} d inner join {nameof(termFrequency)} t on t.word = d.word");
探索代碼,看看最后的步驟是如何實現的。這些步驟包括:
到目前為止所描述的所有步驟都為 Spark 提供了一個模板或定義。像 LINQ 查詢一樣,實際的處理在結果被具體化之前不會發生(比如計算出總文檔數時)。最后一步調用 Collect 來處理和返回結果,并將其寫入另一個 CSV。然后,你可以使用新文件作為 ML 模型的輸入,下圖是該文件的一部分:
Spark for .NET 使你能夠查詢和塑造數據。你在同一個數據源上建立了多個 data frame,然后添加它們以獲得關于重要術語、字數和閱讀時間的洞察。下一步是應用 ML 來自動生成類別。
預測類別
最后一步是對文檔進行分類。DocMLCategorization項目包含了 ML.NET 的Microsoft.ML包。雖然 Spark 使用的是 data frame,但 data view 在 ML.NET 中提供了類似的概念。
這個例子為 ML.NET 使用了一個單獨的項目,這樣就可以將模型作為一個獨立的步驟進行訓練。對于許多場景,可以直接從你的.NET for Spark 項目中引用 ML.NET,并將 ML 作為同一工作的一部分來執行。
首先,你必須對類進行標記,以便 ML.NET 知道源數據中的哪些列映射到類中的屬性。在FileData 類使用 LoadColumn 注解,就像這樣:
[LoadColumn(0)] public string File { get; set; } [LoadColumn(1)] public string Title { get; set; }
然后,你可以為模型創建上下文,并從上一步中生成的文件中加載 data view:
var context = new MLContext(seed: 0); var dataToTrain = context.Data .LoadFromTextFile<FileData>(path: filesHelper.ModelTrainingFile, hasHeader: true, allowQuoting: true, separatorChar: ',');
ML 算法對數字的處理效果最好,所以文檔中的文本必須轉換為數字向量。ML.NET 為此提供了FeaturizeText方法。在一個步驟中,模型分別:
檢測語言
將文本標記為單個單詞或標記
規范化文本,以便對單詞的變體進行標準化和大小寫相似化
將這些術語轉換為一致的數值或準備處理的“特征向量”
以下代碼將列轉換為特征,然后創建一個結合了多個特征的“Features”列。
var pipeline = context.Transforms.Text.FeaturizeText( nameof(FileData.Title).Featurized(), nameof(FileData.Title)).Append(context.Transforms.Text.FeaturizeText(nameof(FileData.Subtitle1).Featurized(), nameof(FileData.Subtitle1))).Append(context.Transforms.Text.FeaturizeText(nameof(FileData.Subtitle2).Featurized(), nameof(FileData.Subtitle2))).Append(context.Transforms.Text.FeaturizeText(nameof(FileData.Subtitle3).Featurized(), nameof(FileData.Subtitle3))).Append(context.Transforms.Text.FeaturizeText(nameof(FileData.Subtitle4).Featurized(), nameof(FileData.Subtitle4))).Append(context.Transforms.Text.FeaturizeText(nameof(FileData.Subtitle5).Featurized(), nameof(FileData.Subtitle5))).Append(context.Transforms.Text.FeaturizeText(nameof(FileData.Top20Words).Featurized(), nameof(FileData.Top20Words))).Append(context.Transforms.Concatenate(features, nameof(FileData.Title).Featurized(), nameof(FileData.Subtitle1).Featurized(), nameof(FileData.Subtitle2).Featurized(), nameof(FileData.Subtitle3).Featurized(), nameof(FileData.Subtitle4).Featurized(), nameof(FileData.Subtitle5).Featurized(), nameof(FileData.Top20Words).Featurized()) );
此時,數據已經為訓練模型做了適當的準備。訓練是無監督的,這意味著它必須用一個例子來推斷信息。你沒有將樣本類別輸入到模型中,所以算法必須通過分析特征如何聚類來找出數據的相互關聯。你將使用k-means 聚類算法。該算法使用特征計算文檔之間的“距離”,然后圍繞分組后的文檔“繪制”邊界。該算法涉及隨機化,因此兩次運行結果會是不相同的。主要的挑戰是確定訓練的最佳聚類大小。不同的文檔集最好有不同的最佳類別數,但算法需要你在訓練前輸入類別數。
代碼在 2 到 20 個簇之間迭代,以確定最佳大小。對于每次運行,它都會獲取特征數據并應用算法或訓練器。然后,它根據預測模型對現有數據進行轉換。對結果進行評估,以確定每個簇中文檔的平均距離,并選擇平均距離最小的結果。
var options = new KMeansTrainer.Options { FeatureColumnName = features, NumberOfClusters = categories, }; var clusterPipeline = pipeline.Append(context.Clustering.Trainers.KMeans(options)); var model = clusterPipeline.Fit(dataToTrain); var predictions = model.Transform(dataToTrain); var metrics = context.Clustering.Evaluate(predictions); distances.Add(categories, metrics.AverageDistance);
經過培訓和評估后,你可以保存最佳模型,并使用它對數據集進行預測。將生成一個輸出文件以及一個摘要,該摘要顯示有關每個類別的一些元數據并在下面列出標題。標題只是幾個功能之一,因此有時需要仔細研究細節才能使類別有意義。在本地測試中,教程之類的文檔歸于一組,API 文檔歸于另一組,而例外歸于它們自己的組。
ML zip 文件可與 Prediction Engine 一起用于其他項目中的新數據。
機器學習模型另存為單個 zip 文件。該文件可以包含在其他項目中,與 Prediction Engine 一起使用以對新數據進行預測。例如,你可以創建一個 WPF 應用程序,該應用程序允許用戶瀏覽目錄,然后加載并使用經過訓練的模型對文檔進行分類,而無需先對其進行訓練。
下一步是什么
Spark for .NET 計劃與.NET 5 同時在 GA(譯注:GA=General Availability,正式發布的版本)發布。請訪問 https://aka.ms/spark-net-roadmap 閱讀路線圖和推出功能的計劃。(譯注:.NET 5 正式發布時間已過,Spark for .NET 已隨 .NET 5 正式發布)
本文著重于本地開發體驗,為了充分利用大數據的力量,你可以將 Spark 作業提交到云中。有各種各樣的云主機可以容納 PB 級數據,并為你的工作負載提供數十個核的計算能力。Azure Synapse Analytics 是一項 Azure 服務,旨在承載大量數據,提供用于運行大數據作業的群集,并允許通過基于圖表的儀表盤進行交互式探索。若要了解如何將 Spark for .NET 作業提交到 Azure Synapse,請閱讀官方文檔(https://aka.ms/spark-net-synapse)。
下面這張表列舉了 ML.NET 機器學習的常見任務和場景:
感謝各位的閱讀,以上就是“如何使用.NET 5”的內容了,經過本文的學習后,相信大家對如何使用.NET 5這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。