您好,登錄后才能下訂單哦!
這篇文章主要講解了“java8有哪些新功能”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“java8有哪些新功能”吧!
并行流
認識開啟并行流
并行流是什么?是把一個流內容分成多個數據塊,并用不同線程分別處理每個不同數據塊的流。例如,有下面一個例子,在List中,需要對List數據進行分別計算,其代碼如下所示:
List<Apple> appleList = new ArrayList<>(); // 假裝數據是從庫里查出來的 for (Apple apple : appleList) { apple.setPrice(5.0 * apple.getWeight() / 1000); }
在這里,時間復雜度為O(list.size),隨著list的增加,耗時也在增加。并行流可以解決這個問題,代碼如下所示:
appleList.parallelStream().forEach(apple -> apple.setPrice(5.0 * apple.getWeight() / 1000));
這里通過調parallelStream()說明當前流為并行流,然后進行并行執行。并行流內部使用了默認的ForkJoinPool線程池,默認線程數為處理器的核心數。
測試并行流
普通代碼如下所示:
public static void main(String[] args) throws InterruptedException { List<Apple> appleList = initAppleList(); Date begin = new Date(); for (Apple apple : appleList) { apple.setPrice(5.0 * apple.getWeight() / 1000); Thread.sleep(1000); } Date end = new Date(); log.info("蘋果數量:{}個, 耗時:{}s", appleList.size(), (end.getTime() - begin.getTime()) /1000); }
輸出的內容為耗時4s。
并行代碼如下所示:
List<Apple> appleList = initAppleList(); Date begin = new Date(); appleList.parallelStream().forEach(apple -> { apple.setPrice(5.0 * apple.getWeight() / 1000); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } ); Date end = new Date(); log.info("蘋果數量:{}個, 耗時:{}s", appleList.size(), (end.getTime() - begin.getTime()) /1000);
輸出結果為耗時1s。可以看到耗時大大提升了3s。
并行流拆分會影響流的速度
對于并行流來說需要注意以下幾點:
對于 iterate 方法來處理的前 n 個數字來說,不管并行與否,它總是慢于循環的,
而對于 LongStream.rangeClosed() 方法來說,就不存在 iterate 的第兩個痛點了。它生成的是基本類型的值,不用拆裝箱操作,另外它可以直接將要生成的數字 1 - n 拆分成 1 - n/4, 1n/4 - 2n/4, ... 3n/4 - n 這樣四部分。因此并行狀態下的 rangeClosed() 是快于 for 循環外部迭代的
代碼如下所示:
package lambdasinaction.chap7; import java.util.stream.*; public class ParallelStreams { public static long iterativeSum(long n) { long result = 0; for (long i = 0; i <= n; i++) { result += i; } return result; } public static long sequentialSum(long n) { return Stream.iterate(1L, i -> i + 1).limit(n).reduce(Long::sum).get(); } public static long parallelSum(long n) { return Stream.iterate(1L, i -> i + 1).limit(n).parallel().reduce(Long::sum).get(); } public static long rangedSum(long n) { return LongStream.rangeClosed(1, n).reduce(Long::sum).getAsLong(); } public static long parallelRangedSum(long n) { return LongStream.rangeClosed(1, n).parallel().reduce(Long::sum).getAsLong(); } } package lambdasinaction.chap7; import java.util.concurrent.*; import java.util.function.*; public class ParallelStreamsHarness { public static final ForkJoinPool FORK_JOIN_POOL = new ForkJoinPool(); public static void main(String[] args) { System.out.println("Iterative Sum done in: " + measurePerf(ParallelStreams::iterativeSum, 10_000_000L) + " msecs"); System.out.println("Sequential Sum done in: " + measurePerf(ParallelStreams::sequentialSum, 10_000_000L) + " msecs"); System.out.println("Parallel forkJoinSum done in: " + measurePerf(ParallelStreams::parallelSum, 10_000_000L) + " msecs" ); System.out.println("Range forkJoinSum done in: " + measurePerf(ParallelStreams::rangedSum, 10_000_000L) + " msecs"); System.out.println("Parallel range forkJoinSum done in: " + measurePerf(ParallelStreams::parallelRangedSum, 10_000_000L) + " msecs" ); } public static <T, R> long measurePerf(Function<T, R> f, T input) { long fastest = Long.MAX_VALUE; for (int i = 0; i < 10; i++) { long start = System.nanoTime(); R result = f.apply(input); long duration = (System.nanoTime() - start) / 1_000_000; System.out.println("Result: " + result); if (duration < fastest) fastest = duration; } return fastest; } }
共享變量會造成數據出現問題
public static long sideEffectSum(long n) { Accumulator accumulator = new Accumulator(); LongStream.rangeClosed(1, n).forEach(accumulator::add); return accumulator.total; } public static long sideEffectParallelSum(long n) { Accumulator accumulator = new Accumulator(); LongStream.rangeClosed(1, n).parallel().forEach(accumulator::add); return accumulator.total; } public static class Accumulator { private long total = 0; public void add(long value) { total += value; } }
并行流的注意
盡量使用 LongStream / IntStream / DoubleStream 等原始數據流代替 Stream 來處理數字,以避免頻繁拆裝箱帶來的額外開銷
要考慮流的操作流水線的總計算成本,假設 N 是要操作的任務總數,Q 是每次操作的時間。N * Q 就是操作的總時間,Q 值越大就意味著使用并行流帶來收益的可能性越大
對于較少的數據量,不建議使用并行流
容易拆分成塊的流數據,建議使用并行流
感謝各位的閱讀,以上就是“java8有哪些新功能”的內容了,經過本文的學習后,相信大家對java8有哪些新功能這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。