您好,登錄后才能下訂單哦!
這篇文章主要講解了“什么是C語言動態庫”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“什么是C語言動態庫”吧!
我們以這個 repo 為例: https:// github.com/aklomp/base6 4 . 這是一個 C 編寫的 Base64 編碼/解碼庫, 而且支持SIMD.
可以簡單運行下這個庫的 benchmark:
karminski@router02:/data/works/base64$ make clean && SSSE3_CFLAGS=-mssse3 AVX2_CFLAGS=-mavx2 make && make -C test ... Testing with buffer size 100 KB, fastest of 10 * 100 AVX2 encode 12718.47 MB/sec AVX2 decode 14542.81 MB/sec plain encode 3657.40 MB/sec plain decode 3433.23 MB/sec SSSE3 encode 7269.55 MB/sec SSSE3 decode 8173.10 MB/sec ...
我的 CPU 是 Intel(R) Xeon(R) CPU E3-1246 v3 @ 3.50GHz, 可以看到CPU如果支持 AVX2 的話, 可以達到 12GB/s 以上, 這個性能非常強悍, 甚至連普通的SSD都跟不上了.
我們需要的第一步是把這個 repo 編譯為動態庫. 但是這個 repo 并沒有提供動態庫的編譯選項, 所以我們魔改下這個項目的 Makefile.
CFLAGS += -std=c99 -O3 -Wall -Wextra -pedantic # Set OBJCOPY if not defined by environment: OBJCOPY ?= objcopy OBJS = \ lib/arch/avx2/codec.o \ lib/arch/generic/codec.o \ lib/arch/neon32/codec.o \ lib/arch/neon64/codec.o \ lib/arch/ssse3/codec.o \ lib/arch/sse41/codec.o \ lib/arch/sse42/codec.o \ lib/arch/avx/codec.o \ lib/lib.o \ lib/codec_choose.o \ lib/tables/tables.o SOOBJS = \ lib/arch/avx2/codec.so \ lib/arch/generic/codec.so \ lib/arch/neon32/codec.so \ lib/arch/neon64/codec.so \ lib/arch/ssse3/codec.so \ lib/arch/sse41/codec.so \ lib/arch/sse42/codec.so \ lib/arch/avx/codec.so \ lib/lib.so \ lib/codec_choose.so \ lib/tables/tables.so HAVE_AVX2 = 0 HAVE_NEON32 = 0 HAVE_NEON64 = 0 HAVE_SSSE3 = 0 HAVE_SSE41 = 0 HAVE_SSE42 = 0 HAVE_AVX = 0 # The user should supply compiler flags for the codecs they want to build. # Check which codecs we're going to include: ifdef AVX2_CFLAGS HAVE_AVX2 = 1 endif ifdef NEON32_CFLAGS HAVE_NEON32 = 1 endif ifdef NEON64_CFLAGS HAVE_NEON64 = 1 endif ifdef SSSE3_CFLAGS HAVE_SSSE3 = 1 endif ifdef SSE41_CFLAGS HAVE_SSE41 = 1 endif ifdef SSE42_CFLAGS HAVE_SSE42 = 1 endif ifdef AVX_CFLAGS HAVE_AVX = 1 endif ifdef OPENMP CFLAGS += -fopenmp endif .PHONY: all analyze clean all: bin/base64 lib/libbase64.o lib/libbase64.so bin/base64: bin/base64.o lib/libbase64.o lib/libbase64.so $(CC) $(CFLAGS) -o $@ $^ lib/libbase64.o: $(OBJS) $(LD) -r -o $@ $^ $(OBJCOPY) --keep-global-symbols=lib/exports.txt $@ lib/libbase64.so: $(SOOBJS) $(LD) -shared -fPIC -o $@ $^ $(OBJCOPY) --keep-global-symbols=lib/exports.txt $@ lib/config.h: @echo "#define HAVE_AVX2 $(HAVE_AVX2)" > $@ @echo "#define HAVE_NEON32 $(HAVE_NEON32)" >> $@ @echo "#define HAVE_NEON64 $(HAVE_NEON64)" >> $@ @echo "#define HAVE_SSSE3 $(HAVE_SSSE3)" >> $@ @echo "#define HAVE_SSE41 $(HAVE_SSE41)" >> $@ @echo "#define HAVE_SSE42 $(HAVE_SSE42)" >> $@ @echo "#define HAVE_AVX $(HAVE_AVX)" >> $@ $(OBJS): lib/config.h $(SOOBJS): lib/config.h # o lib/arch/avx2/codec.o: CFLAGS += $(AVX2_CFLAGS) lib/arch/neon32/codec.o: CFLAGS += $(NEON32_CFLAGS) lib/arch/neon64/codec.o: CFLAGS += $(NEON64_CFLAGS) lib/arch/ssse3/codec.o: CFLAGS += $(SSSE3_CFLAGS) lib/arch/sse41/codec.o: CFLAGS += $(SSE41_CFLAGS) lib/arch/sse42/codec.o: CFLAGS += $(SSE42_CFLAGS) lib/arch/avx/codec.o: CFLAGS += $(AVX_CFLAGS) # so lib/arch/avx2/codec.so: CFLAGS += $(AVX2_CFLAGS) lib/arch/neon32/codec.so: CFLAGS += $(NEON32_CFLAGS) lib/arch/neon64/codec.so: CFLAGS += $(NEON64_CFLAGS) lib/arch/ssse3/codec.so: CFLAGS += $(SSSE3_CFLAGS) lib/arch/sse41/codec.so: CFLAGS += $(SSE41_CFLAGS) lib/arch/sse42/codec.so: CFLAGS += $(SSE42_CFLAGS) lib/arch/avx/codec.so: CFLAGS += $(AVX_CFLAGS) %.o: %.c $(CC) $(CFLAGS) -o $@ -c $< %.so: %.c $(CC) $(CFLAGS) -shared -fPIC -o $@ -c $< analyze: clean scan-build --use-analyzer=`which clang` --status-bugs make clean: rm -f bin/base64 bin/base64.o lib/libbase64.o lib/libbase64.so lib/config.h $(OBJS)
看不懂沒關系, Makefile 是如此的復雜, 我也看不懂, 僅僅是憑著感覺修改的, 然后他就恰好能運行了... 注意 Makefile 的縮進一定要用 "\t", 否則不符合語法會報錯.
然后我們進行編譯:
AVX2_CFLAGS=-mavx2 SSSE3_CFLAGS=-mssse3 SSE41_CFLAGS=-msse4.1 SSE42_CFLAGS=-msse4.2 AVX_CFLAGS=-mavx make lib/libbase64.so
這樣我們就得到了libbase64.so 動態庫 (在 lib 里面). 這里還順便開啟了各種 SIMD 選項. 如果不需要的話可以關閉.
當然這只是魔法, 不是煉金術, 所以是需要付出努力的, 我們要手動實現動態庫的橋接, 首先我們需要查看我們要調用的函數需要什么參數. 這兩個定義很簡單, 我們需要傳入:
const char *src size_t srclen char *out size_t *outlen int flags
void base64_encode(const char *src, size_t srclen, char *out, size_t *outlen, int flags); int base64_decode(const char *src, size_t srclen, char *out, size_t *outlen, int flags);
然后我們就可以開始編寫 ffi 橋接程序了. 首先把需要的庫全都包含進來, 注意, 多用 local 沒壞處, 使用 local 可以有效從局部查詢, 避免低效的全局查詢. 甚至其他包中的函數都可以 local 一下來提升性能.
動態庫的話用專用的 ffi.load
來引用.
然后定義一個 _M 用來包裹我們的庫. 這里跟 JavaScript 很像, JavaScript 在瀏覽器里有 window, Lua 有 _G. 我們要盡可能避免封裝好的庫直接扔給全局, 因此封裝起來是個好辦法.
-- init local ffi = require "ffi" local floor = math.floor local ffi_new = ffi.new local ffi_str = ffi.string local ffi_typeof = ffi.typeof local C = ffi.C local libbase64 = ffi.load("./libbase64.so") -- change this path when needed. local _M = { _VERSION = '0.0.1' }
然后是用 ffi.cdef 聲明 ABI 接口, 這里更簡單, 直接把源代碼的頭文件中的函數聲明拷過來就完事了:
-- cdef ffi.cdef[[ void base64_encode(const uint8_t *src, size_t srclen, uint8_t *out, size_t *outlen, size_t flags); int base64_decode(const uint8_t *src, size_t srclen, uint8_t *out, size_t *outlen, size_t flags); ]]
接下來是最重要的類型轉換:
-- define types local uint8t = ffi_typeof("uint8_t[?]") -- uint8_t * local psizet = ffi_typeof("size_t[1]") -- size_t * -- package function function _M.base64_encode(src, flags) local dlen = floor((#src * 8 + 4) / 6) local out = ffi_new(uint8t, dlen) local outlen = ffi_new(psizet, 1) libbase64.base64_encode(src, #src, out, outlen, flags) return ffi_str(out, outlen[0]) end function _M.base64_decode(src, flags) local dlen = floor((#src + 1) * 6 / 8) local out = ffi_new(uint8t, dlen) local outlen = ffi_new(psizet, 1) libbase64.base64_decode(src, #src, out, outlen, flags) return ffi_str(out, outlen[0]) end
我們用 ffi_typeof 來定義需要映射的數據類型, 然后用 ffi_new 來將其實例化, 分配內存空間. 具體來講:
我們定義了2種數據類型, 其中, local uint8t = ffi_typeof("uint8_t[?]")
類型用來傳輸字符串, 后面的問號是給 local out = ffi_new(uint8t, dlen)
中的 ffi_new
函數準備的, 它的第二個參數可以指定實例化該數據類型時的長度. 這樣我們就得到了一個空的字符串數組, 用來裝 C 函數返回的結果. 這里的 dlen 計算出了源字符串 base64 encode 之后的長度, 分配該長度即可.
同樣, local psizet = ffi_typeof("size_t[1]")
指定了一個 size_t *
類型. C 語言里面數組就是指針, 即 size_t[0]
與 site_t*
是等價的. 因此我們分只有一個元素的 size_t
數組就得到了指向 size_t
類型的指針. 然后在 local outlen = ffi_new(psizet, 1)
的時候后面的參數寫的也是1, 不過這里寫什么已經無所謂了, 它只是不支持傳進去空, 所以我們相當于傳了個 placeholder.
在使用這個值的時候, 我們也是按照數組的模式去使用的: return ffi_str(out, outlen[0])
.
需要注意的是, 一定要將 require "ffi"
以及 ffi.load
放在代碼最底層, 否則會出現 table overflow
的情況.
最后, 這個文件是這樣子的:
--[[ ffi-base64.lua @version 20201228:1 @author karminski <code.karminski@outlook.com> ]]-- -- init local ffi = require "ffi" local floor = math.floor local ffi_new = ffi.new local ffi_str = ffi.string local ffi_typeof = ffi.typeof local C = ffi.C local libbase64 = ffi.load("./libbase64.so") -- change this path when needed. local _M = { _VERSION = '0.0.1' } -- cdef ffi.cdef[[ void base64_encode(const uint8_t *src, size_t srclen, uint8_t *out, size_t *outlen, size_t flags); int base64_decode(const uint8_t *src, size_t srclen, uint8_t *out, size_t *outlen, size_t flags); ]] -- define types local uint8t = ffi_typeof("uint8_t[?]") -- uint8_t * local psizet = ffi_typeof("size_t[1]") -- size_t * -- package function function _M.base64_encode(src, flags) local dlen = floor((#src * 8 + 4) / 6) local out = ffi_new(uint8t, dlen) local outlen = ffi_new(psizet, 1) libbase64.base64_encode(src, #src, out, outlen, flags) return ffi_str(out, outlen[0]) end function _M.base64_decode(src, flags) local dlen = floor((#src + 1) * 6 / 8) local out = ffi_new(uint8t, dlen) local outlen = ffi_new(psizet, 1) libbase64.base64_decode(src, #src, out, outlen, flags) return ffi_str(out, outlen[0]) end return _M
好了, 大功告成, 我們寫個 demo 調用一下試試:
-- main.lua local ffi_base64 = require "ffi-base64" local target = "https://example.com" local r = ffi_base64.base64_encode(target, 0) print("base64 encode result: \n"..r) local r = ffi_base64.base64_decode(r, 0) print("base64 decode result: \n"..r)
root@router02:/data/works/libbase64-ffi# luajit -v LuaJIT 2.1.0-beta3 -- Copyright (C) 2005-2020 Mike Pall. https://luajit.org/ root@router02:/data/works/libbase64-ffi# luajit ./main.lua base64 encode result: aHR0cHM6Ly9leGFtcGxlLmNvbQ== base64 decode result: https://example.com
感謝各位的閱讀,以上就是“什么是C語言動態庫”的內容了,經過本文的學習后,相信大家對什么是C語言動態庫這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。