您好,登錄后才能下訂單哦!
這篇文章給大家介紹Python中怎么實現一個面部識別功能,內容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。
使用Haar人臉特征分類器
用以下圖像為例:
來看看識別這張圖片中的人臉代碼:
import cv2 group_of_people_image = cv2.imread('images/image7.jpg') frontal_face_classifier = cv2.CascadeClassifier('classifier/haarcascade_frontalface_default.xml') image_in_gray_scale = cv2.cvtColor(group_of_people_image,cv2.COLOR_BGR2GRAY) faces = frontal_face_classifier.detectMultiScale(image=image_in_gray_scale,scaleFactor=1.3, minNeighbors=6) for (x_axis, y_axis, weight,height) in faces: cv2.rectangle(group_of_people_image,(x_axis, y_axis), (x_axis + weight, y_axis + height), (255, 0, 0), 2)
該算法將圖像轉換為灰度圖像,如前所述,這是分類器操作的一個基本步驟,然后我們使用dectedMultiScale函數搜索圖像中的人臉,并通過繪制矩形來顯示圖像的位置,當定位人臉時結果如下:
我們能夠準確地分析兩張出現的臉(采用矩形的方式將人臉框起來),有兩個人完全正面地露出他們的臉,人臉完全顯現,所以我們可以清楚地看到他的臉;另一個人只露出了面部的一部分,所以我們沒有得到準確的信息來確認這是一張完整的人臉。
面部特征檢測
Dlib是一個擁有一些分類器的庫,可以幫助我們檢測人臉的某些部分,例如:眼睛、眉毛、鼻子和洋娃娃的區域。以下圖為例:
現在,使用算法來識別圖像中的面部特征點:
import cv2 import dlib import numpy as np initial_image = cv2.imread('images/image9.jpg') initial_image_in_rgb = cv2.cvtColor(initial_image,cv2.COLOR_BGR2RGB) reference_image = initial_image_in_rgb.copy() classifier_path = dlib.shape_predictor('classifier/shape_predictor_68_face_landmarks.dat') frontal_face_detector = dlib.get_frontal_face_detector() rectangles =frontal_face_detector(initial_image,1) for k, d inenumerate(rectangles): cv2.rectangle(reference_image,(d.left(), d.top()), (d.right(), d.bottom()), (255, 255, 0), 2) landmarks = [] for rectangle in rectangles: landmarks.append(np.matrix([[p.x, p.y] for p inclassifier_path(reference_image,rectangle).parts()])) for landmark in landmarks: for index, point inenumerate(landmark): point_center = (point[0, 0], point[0, 1]) cv2.circle(reference_image,point_center, 3, (255, 255, 0), -1) cv2.putText(reference_image,str(index), point_center, cv2.FONT_HERSHEY_COMPLEX, 3, (255, 255, 255), 2)
我們使用的是人臉68個特征分類器,它試圖更精確地理解點面,這給了我們更多的選擇去分析結果,其缺點是速度有點慢。所以必須劃定一個矩形來確定我們的臉可能在哪里,特征是我們可以識別的人臉特征,包括臉、嘴、眼睛、眉毛。
一旦用矩形的方式框出了臉,就可以使用功能部件將這些特征返回,最后將得到一些可視化的東西去生成一個帶有面部點的圖像。結果是:
這些點對于幫助識別表情很重要,例如我們可以識別出這個男孩睜著眼睛,閉著嘴巴。把這看作是一種情緒的表現,可以說這個男孩很焦慮。當一個人微笑時,它可以幫助理解這種情緒可能表達的是幸福。
關于Python中怎么實現一個面部識別功能就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。