亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python中保存大型.mat數據文件報錯超出IO限制的操作示例

發布時間:2021-05-11 10:00:52 來源:億速云 閱讀:235 作者:小新 欄目:開發技術

小編給大家分享一下python中保存大型.mat數據文件報錯超出IO限制的操作示例,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

python的五大特點是什么

python的五大特點:1.簡單易學,開發程序時,專注的是解決問題,而不是搞明白語言本身。2.面向對象,與其他主要的語言如C++和Java相比, Python以一種非常強大又簡單的方式實現面向對象編程。3.可移植性,Python程序無需修改就可以在各種平臺上運行。4.解釋性,Python語言寫的程序不需要編譯成二進制代碼,可以直接從源代碼運行程序。5.開源,Python是 FLOSS(自由/開放源碼軟件)之一。

python 保存 .mat 文件的大小是有限制的,似乎是 5G 以內,如果需要保存幾十個 G 的數據的話,可以選用其他方式,

比如 h6 文件

import h6py
def h6_data_write(train_data, train_label, test_data, test_label, shuffled_flag):
    print("h6py文件正在寫入磁盤...")
    
    save_path = "../save_test/" + "train_test_split_data_label_" + shuffled_flag + ".h6"
    with h6py.File(save_path, 'w') as f:
        f.create_dataset('train_data', data=train_data)
        f.create_dataset('train_label', data=train_label)
        f.create_dataset('test_data', data=test_data)
        f.create_dataset('test_label', data=test_label)
    print("h6py文件保存成功!")
def h6_data_read(filename):
    """
        keys() : 獲取本文件夾下所有的文件及文件夾的名字
        f['key_name'] : 獲取對應的對象
    """
    file = h6py.File(filename,'r')
    train_data = file['train_data'][:]
    train_label = file['train_label'][:]
    test_data = file['test_data'][:]
    test_label = file['test_label'][:]
    return train_data, train_label, test_data, test_label

補充:通過python 讀MATLAB數據文件 *.mat

背景

在做deeplearning過程中,使用caffe的框架,一般使用matlab來處理圖片(matlab處理圖片相對簡單,高效),用python來生成需要的lmdb文件以及做test產生結果。

所以某些matlab從圖片處理得到的label信息都會以.mat文件供python讀取,同時也python產生的結果信息也需要matlab來做進一步的處理(當然也可以使用txt,不嫌麻煩自己處理結構信息)。

介紹

matlab和python間的數據傳輸一般是基于matlab的文件格式.mat,python中numpy和scipy提供了一些函數,可以很好的對.mat文件的數據進行讀寫和處理。

在這里numpy作用是提供Array功能映射matlab里面的Matrix,而scipy提供了兩個函數loadmat和savemat來讀寫.mat文件。

下面是一個簡單的測試程序

具體的函數用法可以看幫助文檔:

import scipy.io as sio 
import matplotlib.pyplot as plt 
import numpy as np 
 
#matlab文件名 
matfn=u'E:/python/測試程序/162250671_162251656_1244.mat' 
data=sio.loadmat(matfn) 
 
plt.close('all') 
xi=data['xi'] 
yi=data['yi'] 
ui=data['ui'] 
vi=data['vi'] 
plt.figure(1) 
plt.quiver( xi[::5,::5],yi[::5,::5],ui[::5,::5],vi[::5,::5]) 
plt.figure(2) 
plt.contourf(xi,yi,ui) 
plt.show()  
sio.savemat('saveddata.mat', {'xi': xi,'yi': yi,'ui': ui,'vi': vi})

示例2

import scipy.io as sio
import numpy as np
 
###下面是講解python怎么讀取.mat文件以及怎么處理得到的結果###
load_fn = 'xxx.mat'
load_data = sio.loadmat(load_fn)
load_matrix = load_data['matrix'] #假設文件中存有字符變量是matrix,例如matlab中save(load_fn, 'matrix');當然可以保存多個save(load_fn, 'matrix_x', 'matrix_y', ...);
load_matrix_row = load_matrix[0] #取了當時matlab中matrix的第一行,python中數組行排列
 
###下面是講解python怎么保存.mat文件供matlab程序使用###
save_fn = 'xxx.mat'
save_array = np.array([1,2,3,4])
sio.savemat(save_fn, {'array': save_array}) #和上面的一樣,存在了array變量的第一行
 
save_array_x = np.array([1,2,3,4])
save_array_y = np.array([5,6,7,8])
sio.savemat(save_fn, {'array_x': save_array_x, 'array_x': save_array_x}) #同理,

鑒于以后的目標主要是利用現有的Matlab數據(.mat或者.txt),主要考慮python導入Matlab數據的問題。以下代碼可以解決python讀取.mat文件的問題。

主要使用sicpy.io即可。

sicpy.io提供了兩個函數loadmat和savemat,非常方便。

# adapted from http://blog.csdn.net/rumswell/article/details/8545087
import scipy.io as sio  
#import matplotlib.pyplot as plt
from pylab import *
import numpy as np   
 
matfn='E:\\Pythonrun\\myuse\\matdata.mat'   # the path of .mat data
data=sio.loadmat(matfn)  
xx=data['matdata']
figure(1)
plot(xx)
show()

以下代碼是讀入txt數據并轉換成數組,方法比較笨,更有效的方法待研究。

from numpy import * 
def file2list(filename):  

    fr = open(filename)  
    array = fr.readlines() #以文件中的每行為一個元素,形成一個list列表  
    num = len(array)  
    returnMat = zeros((num,3))#初始化元素為0的,行號數個列表,其中每個元素仍是列表,元素數是3,在此表示矩陣  
    index = 0   
 
    for line in array:  
        line = line.strip()#去掉一行后的回車符號  
        linelist = line.split(' ')#將一行根據分割符,劃分成多個元素的列表  
        returnMat[index,:] = linelist[0:3]#向矩陣賦值,注意這種賦值方式比較笨拙  
        index +=1  
    return returnMat
 
fname = 'E:\\Pythonrun\\myuse\\num_data.txt'
data= file2list(fname)

補充:Python 讀寫 Matlab Mat 格式數據

1. 非 matlab v7.3 files 讀寫

import scipy.io as sio
import numpy
# matFile 讀取
matFile = 'matlabdata.mat'
datas = sio.loadmat(matFile)
# 加載 matFile 內的數據
# 假設 mat 內保存的變量為 matlabdata
matlabdata = datas['matlabdata']
# matFile 寫入
save_matFile = 'save_matlabdata.mat'
save_matlabdata = np.array([1,2,3,4,5])
sio.savemat(save_matFile, {'array':save_matlabdata})

2. matlab v7.3 files 讀取

如果 matlab 保存 data 時,采用的是 ‘-v7.3',scipy.io.loadmat函數加載數據會出現錯誤:

File "/usr/local/lib/python2.7/dist-packages/scipy/io/matlab/mio.py", line 64, in mat_reader_factory
    raise NotImplementedError('Please use HDF reader for matlab v7.3 files')
NotImplementedError: Please use HDF reader for matlab v7.3 files

可以采用:

import h6py
with h6py.File('matlabdata.mat', 'r') as f:
    f.keys() # matlabdata.mat 中的變量名
datas = h6py.File('matlabdata.mat')['matlabdata'].value

以上是“python中保存大型.mat數據文件報錯超出IO限制的操作示例”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

莫力| 百色市| 涪陵区| 义马市| 化州市| 浦县| 武鸣县| 六盘水市| 原平市| 新和县| 北碚区| 武安市| 纳雍县| 太谷县| 隆昌县| 盐山县| 新蔡县| 特克斯县| 扶绥县| 晋州市| 梧州市| 屯昌县| 昌乐县| 肇庆市| 钦州市| 县级市| 重庆市| 四川省| 濉溪县| 安平县| 米泉市| 隆子县| 江油市| 乌拉特中旗| 启东市| 视频| 金平| 昭通市| 台州市| 乐亭县| 南靖县|