您好,登錄后才能下訂單哦!
本篇文章給大家分享的是有關如何在python中計算矩陣特征向量,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
Python是一種編程語言,內置了許多有效的工具,Python幾乎無所不能,該語言通俗易懂、容易入門、功能強大,在許多領域中都有廣泛的應用,例如最熱門的大數據分析,人工智能,Web開發等。
一、使用numpy.linalg.eig(a)函數
參數:
a:想要計算奇異值和右奇異值的方陣。
返回值:
w:特征值。每個特征值根據它的多重性重復。這個數組將是復雜類型,除非虛數部分為0。當傳進的參數a是實數時,得到的特征值是實數。
v:特征向量。
使用實例
>>> from numpy import linalg as LA >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]])
二、使用scipy.linalg.eig()計算方陣的特征向量(numpy方法的拓展)
1、語法格式
print('Eig:',lg.eig(arr)) #求矩陣arr的特征向量
2、使用實例
#coding:utf-8 from __future__ import division from scipy import linalg as la from scipy import optimize import sympy import numpy as np sympy.init_printing() import matplotlib.pyplot as plt # 使用scipy求解矩陣特征值 A = np.array([[1, 3, 5], [3, 5, 3], [5, 3, 9]]) evals, evecs = la.eig(A) eigvalues = la.eigvalsh(A)
以上就是如何在python中計算矩陣特征向量,小編相信有部分知識點可能是我們日常工作會見到或用到的。希望你能通過這篇文章學到更多知識。更多詳情敬請關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。