亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何在tensorflow2.0中使用Keras

發布時間:2021-02-20 16:00:50 來源:億速云 閱讀:454 作者:Leah 欄目:開發技術

如何在tensorflow2.0中使用Keras?相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。

Keras 是一個用于構建和訓練深度學習模型的高階 API。它可用于快速設計原型、高級研究和生產。 keras的3個優點:
方便用戶使用、模塊化和可組合、易于擴展

1.導入tf.keras

tensorflow2推薦使用keras構建網絡,常見的神經網絡都包含在keras.layer中(最新的tf.keras的版本可能和keras不同)

import tensorflow as tf
from tensorflow.keras import layers
print(tf.__version__)
print(tf.keras.__version__)

2.構建簡單模型

2.1模型堆疊

最常見的模型類型是層的堆疊:tf.keras.Sequential 模型

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

2.2網絡配置

tf.keras.layers中網絡配置:

activation:設置層的激活函數。此參數由內置函數的名稱指定,或指定為可調用對象。默認情況下,系統不會應用任何激活函數。

kernel_initializer 和 bias_initializer:創建層權重(核和偏差)的初始化方案。此參數是一個名稱或可調用對象,默認為 “Glorot uniform” 初始化器。

kernel_regularizer 和 bias_regularizer:應用層權重(核和偏差)的正則化方案,例如 L1 或 L2 正則化。默認情況下,系統不會應用正則化函數。

layers.Dense(32, activation='sigmoid')
layers.Dense(32, activation=tf.sigmoid)
layers.Dense(32, kernel_initializer='orthogonal')
layers.Dense(32, kernel_initializer=tf.keras.initializers.glorot_normal)
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(0.01))
layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l1(0.01))

3.訓練和評估

3.1設置訓練流程

構建好模型后,通過調用 compile 方法配置該模型的學習流程:

model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=[tf.keras.metrics.categorical_accuracy])

3.2輸入Numpy數據

import numpy as np

train_x = np.random.random((1000, 72))
train_y = np.random.random((1000, 10))

val_x = np.random.random((200, 72))
val_y = np.random.random((200, 10))

model.fit(train_x, train_y, epochs=10, batch_size=100,
     validation_data=(val_x, val_y))

3.3tf.data輸入數據

dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
dataset = dataset.batch(32)
dataset = dataset.repeat()
val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y))
val_dataset = val_dataset.batch(32)
val_dataset = val_dataset.repeat()

model.fit(dataset, epochs=10, steps_per_epoch=30,
     validation_data=val_dataset, validation_steps=3)

3.4評估與預測

test_x = np.random.random((1000, 72))
test_y = np.random.random((1000, 10))
model.evaluate(test_x, test_y, batch_size=32)
test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y))
test_data = test_data.batch(32).repeat()
model.evaluate(test_data, steps=30)
# predict
result = model.predict(test_x, batch_size=32)
print(result)

4.構建高級模型

4.1函數式api

tf.keras.Sequential 模型是層的簡單堆疊,無法表示任意模型。使用 Keras 函數式 API 可以構建復雜的模型拓撲,例如:

多輸入模型,

多輸出模型,

具有共享層的模型(同一層被調用多次),

具有非序列數據流的模型(例如,殘差連接)。

使用函數式 API 構建的模型具有以下特征:

層實例可調用并返回張量。

輸入張量和輸出張量用于定義 tf.keras.Model 實例。

此模型的訓練方式和 Sequential 模型一樣。

input_x = tf.keras.Input(shape=(72,))
hidden1 = layers.Dense(32, activation='relu')(input_x)
hidden2 = layers.Dense(16, activation='relu')(hidden1)
pred = layers.Dense(10, activation='softmax')(hidden2)

model = tf.keras.Model(inputs=input_x, outputs=pred)
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)

4.2模型子類化

通過對 tf.keras.Model 進行子類化并定義您自己的前向傳播來構建完全可自定義的模型。在 init 方法中創建層并將它們設置為類實例的屬性。在 call 方法中定義前向傳播

class MyModel(tf.keras.Model):
  def __init__(self, num_classes=10):
    super(MyModel, self).__init__(name='my_model')
    self.num_classes = num_classes
    self.layer1 = layers.Dense(32, activation='relu')
    self.layer2 = layers.Dense(num_classes, activation='softmax')
  def call(self, inputs):
    h2 = self.layer1(inputs)
    out = self.layer2(h2)
    return out
  
  def compute_output_shape(self, input_shape):
    shape = tf.TensorShapej(input_shape).as_list()
    shape[-1] = self.num_classes
    return tf.TensorShape(shape)

model = MyModel(num_classes=10)
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.3自定義層

通過對 tf.keras.layers.Layer 進行子類化并實現以下方法來創建自定義層:

build:創建層的權重。使用 add_weight 方法添加權重。

call:定義前向傳播。

compute_output_shape:指定在給定輸入形狀的情況下如何計算層的輸出形狀。
或者,可以通過實現 get_config 方法和 from_config 類方法序列化層。

class MyLayer(layers.Layer):
  def __init__(self, output_dim, **kwargs):
    self.output_dim = output_dim
    super(MyLayer, self).__init__(**kwargs)
  
  def build(self, input_shape):
    shape = tf.TensorShape((input_shape[1], self.output_dim))
    self.kernel = self.add_weight(name='kernel1', shape=shape,
                  initializer='uniform', trainable=True)
    super(MyLayer, self).build(input_shape)
  
  def call(self, inputs):
    return tf.matmul(inputs, self.kernel)

  def compute_output_shape(self, input_shape):
    shape = tf.TensorShape(input_shape).as_list()
    shape[-1] = self.output_dim
    return tf.TensorShape(shape)

  def get_config(self):
    base_config = super(MyLayer, self).get_config()
    base_config['output_dim'] = self.output_dim
    return base_config

  @classmethod
  def from_config(cls, config):
    return cls(**config)
  
model = tf.keras.Sequential(
[
  MyLayer(10),
  layers.Activation('softmax')
])


model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss=tf.keras.losses.categorical_crossentropy,
       metrics=['accuracy'])

model.fit(train_x, train_y, batch_size=16, epochs=5)

4.3回調

callbacks = [
  tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
  tf.keras.callbacks.TensorBoard(log_dir='./logs')
]
model.fit(train_x, train_y, batch_size=16, epochs=5,
     callbacks=callbacks, validation_data=(val_x, val_y))

5保持和恢復

5.1權重保存

model = tf.keras.Sequential([
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
       loss='categorical_crossentropy',
       metrics=['accuracy'])

model.save_weights('./weights/model')
model.load_weights('./weights/model')
model.save_weights('./model.h6')
model.load_weights('./model.h6')

5.2保存網絡結構

# 序列化成json
import json
import pprint
json_str = model.to_json()
pprint.pprint(json.loads(json_str))
fresh_model = tf.keras.models.model_from_json(json_str)


# 保持為yaml格式 #需要提前安裝pyyaml

yaml_str = model.to_yaml()
print(yaml_str)
fresh_model = tf.keras.models.model_from_yaml(yaml_str)

5.3保存整個模型

model = tf.keras.Sequential([
 layers.Dense(10, activation='softmax', input_shape=(72,)),
 layers.Dense(10, activation='softmax')
])
model.compile(optimizer='rmsprop',
       loss='categorical_crossentropy',
       metrics=['accuracy'])
model.fit(train_x, train_y, batch_size=32, epochs=5)
model.save('all_model.h6')
model = tf.keras.models.load_model('all_model.h6')

6.將keras用于Estimator

Estimator API 用于針對分布式環境訓練模型。它適用于一些行業使用場景,例如用大型數據集進行分布式訓練并導出模型以用于生產

model = tf.keras.Sequential([layers.Dense(10,activation='softmax'),
             layers.Dense(10,activation='softmax')])

model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
       loss='categorical_crossentropy',
       metrics=['accuracy'])

estimator = tf.keras.estimator.model_to_estimator(model)

看完上述內容,你們掌握如何在tensorflow2.0中使用Keras的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

安塞县| 商都县| 曲阳县| 巴中市| 临高县| 秦皇岛市| 大余县| 澄城县| 灵山县| 舟山市| 香河县| 长子县| 凤阳县| 米泉市| 福泉市| 沧州市| 湖北省| 靖边县| 东至县| 吉隆县| 木兰县| 于都县| 理塘县| 普兰县| 红河县| 聂拉木县| 中卫市| 尼勒克县| 绥中县| 客服| 徐州市| 桐城市| 濉溪县| 全椒县| 怀远县| 建平县| 临泽县| 加查县| 鹰潭市| 房产| 泸定县|