亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》
  • 首頁 > 
  • 教程 > 
  • 數據庫 > 
  • 實現SQL Server 原生數據從XML生成JSON數據的實例代碼怎么編寫

實現SQL Server 原生數據從XML生成JSON數據的實例代碼怎么編寫

發布時間:2021-12-14 11:30:06 來源:億速云 閱讀:337 作者:柒染 欄目:數據庫

實現SQL Server 原生數據從XML生成JSON數據的實例代碼怎么編寫,很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。

實現SQL Server 原生數據從XML生成JSON數據的實例代碼

SQL Server 是關系數據庫,查詢結果通常都是數據集,但是在一些特殊需求下,我們需要XML數據,最近這些年,JSON作為WebAPI常用的交換數據格式,那么數據庫如何生成JSON數據呢?今天就寫了一個DEMO.

1.創建表及測試數據

SET NOCOUNT ON  IF OBJECT_ID('STATS') IS NOT NULL DROP TABLE STATS IF OBJECT_ID('STATIONS') IS NOT NULL DROP TABLE STATIONS IF OBJECT_ID('OPERATORS') IS NOT NULL DROP TABLE OPERATORS IF OBJECT_ID('REVIEWS') IS NOT NULL DROP TABLE REVIEWS  -- Create and populate table with Station CREATE TABLE STATIONS(ID INTEGER PRIMARY KEY, CITY NVARCHAR(20), STATE CHAR(2), LAT_N REAL, LONG_W REAL); INSERT INTO STATIONS VALUES (13, 'Phoenix', 'AZ', 33, 112); INSERT INTO STATIONS VALUES (44, 'Denver', 'CO', 40, 105); INSERT INTO STATIONS VALUES (66, 'Caribou', 'ME', 47, 68);  -- Create and populate table with Operators CREATE TABLE OPERATORS(ID INTEGER PRIMARY KEY, NAME NVARCHAR(20), SURNAME NVARCHAR(20)); INSERT INTO OPERATORS VALUES (50, 'John "The Fox"', 'Brown'); INSERT INTO OPERATORS VALUES (51, 'Paul', 'Smith'); INSERT INTO OPERATORS VALUES (52, 'Michael', 'Williams');   -- Create and populate table with normalized temperature and precipitation data CREATE TABLE STATS (     STATION_ID INTEGER REFERENCES STATIONS(ID),     MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),     TEMP_F REAL CHECK (TEMP_F BETWEEN -80 AND 150),     RAIN_I REAL CHECK (RAIN_I BETWEEN 0 AND 100), PRIMARY KEY (STATION_ID, MONTH)); INSERT INTO STATS VALUES (13, 1, 57.4, 0.31); INSERT INTO STATS VALUES (13, 7, 91.7, 5.15); INSERT INTO STATS VALUES (44, 1, 27.3, 0.18); INSERT INTO STATS VALUES (44, 7, 74.8, 2.11); INSERT INTO STATS VALUES (66, 1, 6.7, 2.10); INSERT INTO STATS VALUES (66, 7, 65.8, 4.52);  -- Create and populate table with Review CREATE TABLE REVIEWS(STATION_ID INTEGER,STAT_MONTH INTEGER,OPERATOR_ID INTEGER)  insert into REVIEWS VALUES (13,1,50) insert into REVIEWS VALUES (13,7,50) insert into REVIEWS VALUES (44,7,51) insert into REVIEWS VALUES (44,7,52) insert into REVIEWS VALUES (44,7,50) insert into REVIEWS VALUES (66,1,51) insert into REVIEWS VALUES (66,7,51)

2.查詢結果集

select   STATIONS.ID    as ID,       STATIONS.CITY   as City,       STATIONS.STATE  as State,       STATIONS.LAT_N  as LatN,       STATIONS.LONG_W  as LongW,       STATS.MONTH    as Month,       STATS.RAIN_I   as Rain,       STATS.TEMP_F   as Temp,     OPERATORS.NAME  as Name,     OPERATORS.SURNAME as Surname from    stations  inner join stats   on stats.STATION_ID=STATIONS.ID  left join reviews  on reviews.STATION_ID=stations.id             and reviews.STAT_MONTH=STATS.[MONTH] left join OPERATORS on OPERATORS.ID=reviews.OPERATOR_ID

結果:

2.查詢xml數據

select stations.*,     (select stats.*,          (select OPERATORS.*          from  OPERATORS          inner join reviews on OPERATORS.ID=reviews.OPERATOR_ID          where reviews.STATION_ID=STATS.STATION_ID          and  reviews.STAT_MONTH=STATS.MONTH          for xml path('operator'),type         ) operators     from STATS      where STATS.STATION_ID=stations.ID      for xml path('stat'),type     ) stats  from  stations  for  xml path('station'),type

結果:

<station>  <ID>13</ID>  <CITY>Phoenix</CITY>  <STATE>AZ</STATE>  <LAT_N>3.3000000e+001</LAT_N>  <LONG_W>1.1200000e+002</LONG_W>  <stats>   <stat>    <STATION_ID>13</STATION_ID>    <MONTH>1</MONTH>    <TEMP_F>5.7400002e+001</TEMP_F>    <RAIN_I>3.1000000e-001</RAIN_I>    <operators>     <operator>      <ID>50</ID>      <NAME>John "The Fox"</NAME>      <SURNAME>Brown</SURNAME>     </operator>    </operators>   </stat>   <stat>    <STATION_ID>13</STATION_ID>    <MONTH>7</MONTH>    <TEMP_F>9.1699997e+001</TEMP_F>    <RAIN_I>5.1500001e+000</RAIN_I>    <operators>     <operator>      <ID>50</ID>      <NAME>John "The Fox"</NAME>      <SURNAME>Brown</SURNAME>     </operator>    </operators>   </stat>  </stats> </station> <station>  <ID>44</ID>  <CITY>Denver</CITY>  <STATE>CO</STATE>  <LAT_N>4.0000000e+001</LAT_N>  <LONG_W>1.0500000e+002</LONG_W>  <stats>   <stat>    <STATION_ID>44</STATION_ID>    <MONTH>1</MONTH>    <TEMP_F>2.7299999e+001</TEMP_F>    <RAIN_I>1.8000001e-001</RAIN_I>   </stat>   <stat>    <STATION_ID>44</STATION_ID>    <MONTH>7</MONTH>    <TEMP_F>7.4800003e+001</TEMP_F>    <RAIN_I>2.1099999e+000</RAIN_I>    <operators>     <operator>      <ID>51</ID>      <NAME>Paul</NAME>      <SURNAME>Smith</SURNAME>     </operator>     <operator>      <ID>52</ID>      <NAME>Michael</NAME>      <SURNAME>Williams</SURNAME>     </operator>     <operator>      <ID>50</ID>      <NAME>John "The Fox"</NAME>      <SURNAME>Brown</SURNAME>     </operator>    </operators>   </stat>  </stats> </station> <station>  <ID>66</ID>  <CITY>Caribou</CITY>  <STATE>ME</STATE>  <LAT_N>4.7000000e+001</LAT_N>  <LONG_W>6.8000000e+001</LONG_W>  <stats>   <stat>    <STATION_ID>66</STATION_ID>    <MONTH>1</MONTH>    <TEMP_F>6.6999998e+000</TEMP_F>    <RAIN_I>2.0999999e+000</RAIN_I>    <operators>     <operator>      <ID>51</ID>      <NAME>Paul</NAME>      <SURNAME>Smith</SURNAME>     </operator>    </operators>   </stat>   <stat>    <STATION_ID>66</STATION_ID>    <MONTH>7</MONTH>    <TEMP_F>6.5800003e+001</TEMP_F>    <RAIN_I>4.5200000e+000</RAIN_I>    <operators>     <operator>      <ID>51</ID>      <NAME>Paul</NAME>      <SURNAME>Smith</SURNAME>     </operator>    </operators>   </stat>  </stats> </station>

3.如何生成JSON數據

1)創建輔助函數

CREATE FUNCTION [dbo].[qfn_XmlToJson](@XmlData xml) RETURNS nvarchar(max) AS BEGIN  declare @m nvarchar(max)  SELECT @m='['+Stuff  (    (SELECT theline from   (SELECT ','+' {'+Stuff     (        (SELECT ',"'+coalesce(b.c.value('local-name(.)', 'NVARCHAR(255)'),'')+'":'+            case when b.c.value('count(*)','int')=0             then dbo.[qfn_JsonEscape](b.c.value('text()[1]','NVARCHAR(MAX)'))            else dbo.qfn_XmlToJson(b.c.query('*'))            end          from x.a.nodes('*') b(c)                                          for xml path(''),TYPE).value('(./text())[1]','NVARCHAR(MAX)')         ,1,1,'')+'}'      from @XmlData.nodes('/*') x(a)     ) JSON(theLine)     for xml path(''),TYPE).value('.','NVARCHAR(MAX)')    ,1,1,'')+']'   return @m END
CREATE FUNCTION [dbo].[qfn_JsonEscape](@value nvarchar(max) ) returns nvarchar(max) as begin    if (@value is null) return 'null'  if (TRY_PARSE( @value as float) is not null) return @value   set @value=replace(@value,'\','\\')  set @value=replace(@value,'"','\"')   return '"'+@value+'"' end

3)查詢sql

select dbo.qfn_XmlToJson (  (   select stations.ID,stations.CITY,stations.STATE,stations.LAT_N,stations.LONG_W ,      (select stats.*,            (select OPERATORS.*            from  OPERATORS inner join reviews            on   OPERATORS.ID=reviews.OPERATOR_ID           where reviews.STATION_ID=STATS.STATION_ID            and  reviews.STAT_MONTH=STATS.MONTH            for xml path('operator'),type           ) operators       from STATS        where STATS.STATION_ID=stations.ID for xml path('stat'),type      ) stats     from stations for xml path('stations'),type   ) )

結果:

[ {"ID":13,"CITY":"Phoenix","STATE":"AZ","LAT_N":3.3000000e+001,"LONG_W":1.1200000e+002,"stats":[ {"STATION_ID":13,"MONTH":1,"TEMP_F":5.7400002e+001,"RAIN_I":3.1000000e-001,"operators":[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}, {"STATION_ID":13,"MONTH":7,"TEMP_F":9.1699997e+001,"RAIN_I":5.1500001e+000,"operators":[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":44,"CITY":"Denver","STATE":"CO","LAT_N":4.0000000e+001,"LONG_W":1.0500000e+002,"stats":[ {"STATION_ID":44,"MONTH":1,"TEMP_F":2.7299999e+001,"RAIN_I":1.8000001e-001}, {"STATION_ID":44,"MONTH":7,"TEMP_F":7.4800003e+001,"RAIN_I":2.1099999e+000,"operators":[ {"ID":51,"NAME":"Paul","SURNAME":"Smith"}, {"ID":52,"NAME":"Michael","SURNAME":"Williams"}, {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":66,"CITY":"Caribou","STATE":"ME","LAT_N":4.7000000e+001,"LONG_W":6.8000000e+001,"stats":[ {"STATION_ID":66,"MONTH":1,"TEMP_F":6.6999998e+000,"RAIN_I":2.0999999e+000,"operators":[ {"ID":51,"NAME":"Paul","SURNAME":"Smith"}]}, {"STATION_ID":66,"MONTH":7,"TEMP_F":6.5800003e+001,"RAIN_I":4.5200000e+000,"operators":[ {"ID":51,"NAME":"Paul","SURNAME":"Smith"}]}]}]

JSON作為靈活的Web通信交換架構,如果把配置數據存放在數據庫中,直接獲取JSON,那配置就會非常簡單了,也能夠大量減輕應用服務器的壓力!

看完上述內容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注億速云行業資訊頻道,感謝您對億速云的支持。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

子长县| 固镇县| 渝中区| 台南市| 三亚市| 神池县| 四会市| 婺源县| 宕昌县| 吴旗县| 通海县| 广汉市| 揭西县| 柘城县| 黄梅县| 依兰县| 桑日县| 沙坪坝区| 怀集县| 连江县| 南涧| 胶州市| 安宁市| 武乡县| 丹巴县| 乐东| 翼城县| 长垣县| 岳池县| 昌黎县| 东海县| 浏阳市| 紫金县| 常德市| 高州市| 禹州市| 黎川县| 普陀区| 卢湾区| 安西县| 桂平市|