亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Oracle 學習之 數據倉庫(二) Dimension 的理解

發布時間:2020-07-22 01:14:51 來源:網絡 閱讀:1089 作者:lqding1980 欄目:關系型數據庫

   在數據倉庫中,有事實表、維度表兩個概念。

   事實表是數據倉庫結構中的中央表,它包含聯系事實與維度表的數字度量值和鍵。事實數據表包含描述業務(例如產品銷售)內特定事件的數據。

   維度表是維度屬性的集合。是分析問題的一個窗口。是人們觀察數據的特定角度,是考慮問題時的一類屬性,屬性的集合構成一個維。

   如圖示

 

Oracle 學習之 數據倉庫(二) Dimension 的理解


我們以sh用戶下的sales表和times表來看,

SALES為事實表

SQL> desc sales
 Name					   Null?    Type
 ----------------------------------------- -------- ----------------------------
 PROD_ID				   NOT NULL NUMBER
 CUST_ID				   NOT NULL NUMBER
 TIME_ID				   NOT NULL DATE
 CHANNEL_ID				   NOT NULL NUMBER
 PROMO_ID				   NOT NULL NUMBER
 QUANTITY_SOLD				   NOT NULL NUMBER(10,2)
 AMOUNT_SOLD				   NOT NULL NUMBER(10,2)

TIMES為維度表

SQL> desc times
 Name					   Null?    Type
 ----------------------------------------- -------- ----------------------------
 TIME_ID				   NOT NULL DATE
 DAY_NAME				   NOT NULL VARCHAR2(9)
 DAY_NUMBER_IN_WEEK			   NOT NULL NUMBER(1)
 DAY_NUMBER_IN_MONTH			   NOT NULL NUMBER(2)
 CALENDAR_WEEK_NUMBER			   NOT NULL NUMBER(2)
 FISCAL_WEEK_NUMBER			   NOT NULL NUMBER(2)
 WEEK_ENDING_DAY			   NOT NULL DATE
 WEEK_ENDING_DAY_ID			   NOT NULL NUMBER
 CALENDAR_MONTH_NUMBER			   NOT NULL NUMBER(2)
 FISCAL_MONTH_NUMBER			   NOT NULL NUMBER(2)
 CALENDAR_MONTH_DESC			   NOT NULL VARCHAR2(8)
 CALENDAR_MONTH_ID			   NOT NULL NUMBER
 FISCAL_MONTH_DESC			   NOT NULL VARCHAR2(8)
 FISCAL_MONTH_ID			   NOT NULL NUMBER
 DAYS_IN_CAL_MONTH			   NOT NULL NUMBER
 DAYS_IN_FIS_MONTH			   NOT NULL NUMBER
 END_OF_CAL_MONTH			   NOT NULL DATE
 END_OF_FIS_MONTH			   NOT NULL DATE
 CALENDAR_MONTH_NAME			   NOT NULL VARCHAR2(9)
 FISCAL_MONTH_NAME			   NOT NULL VARCHAR2(9)
 CALENDAR_QUARTER_DESC			   NOT NULL CHAR(7)
 CALENDAR_QUARTER_ID			   NOT NULL NUMBER
 FISCAL_QUARTER_DESC			   NOT NULL CHAR(7)
 FISCAL_QUARTER_ID			   NOT NULL NUMBER
 DAYS_IN_CAL_QUARTER			   NOT NULL NUMBER
 DAYS_IN_FIS_QUARTER			   NOT NULL NUMBER
 END_OF_CAL_QUARTER			   NOT NULL DATE
 END_OF_FIS_QUARTER			   NOT NULL DATE
 CALENDAR_QUARTER_NUMBER		   NOT NULL NUMBER(1)
 FISCAL_QUARTER_NUMBER			   NOT NULL NUMBER(1)
 CALENDAR_YEAR				   NOT NULL NUMBER(4)
 CALENDAR_YEAR_ID			   NOT NULL NUMBER
 FISCAL_YEAR				   NOT NULL NUMBER(4)
 FISCAL_YEAR_ID 			   NOT NULL NUMBER
 DAYS_IN_CAL_YEAR			   NOT NULL NUMBER
 DAYS_IN_FIS_YEAR			   NOT NULL NUMBER
 END_OF_CAL_YEAR			   NOT NULL DATE
 END_OF_FIS_YEAR			   NOT NULL DATE


如果我們創建一個物化視圖

create materialized view sales_month_sum 
enable query rewrite as 
  SELECT t.calendar_month_id,
         prod_id,
         channel_id,
         promo_id,
         SUM (quantity_sold) quantity_sold,
         SUM (amount_sold) amount_sold
    FROM sales s, times t
   WHERE s.time_id = t.time_id
GROUP BY prod_id,
         channel_id,
         promo_id,
         t.calendar_month_id;

如果我們做如下按月的分組查詢

SQL> alter session set query_rewrite_enabled=true;
SQL> alter session set query_rewrite_integrity=trusted;
SQL> set autotrace traceonly
SQL> set line 200
SQL>   SELECT t.calendar_month_id,
         prod_id,
         channel_id,
         promo_id,
         SUM (quantity_sold) quantity_sold,
         SUM (amount_sold) amount_sold
    FROM sales s, times t
   WHERE s.time_id = t.time_id
GROUP BY prod_id,
         channel_id,
         promo_id,
         t.calendar_month_id; 

9068 rows selected.


Execution Plan
----------------------------------------------------------
Plan hash value: 3287305789

------------------------------------------------------------------------------------------------
| Id  | Operation		     | Name	       | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	     |		       |  9068 |   690K|    13	 (0)| 00:00:01 |
|   1 |  MAT_VIEW REWRITE ACCESS FULL| SALES_MONTH_SUM |  9068 |   690K|    13	 (0)| 00:00:01 |
------------------------------------------------------------------------------------------------

可見查詢使用的是物化視圖,但是如果我需要按年、季度對數據做分組查詢呢?

  SELECT t.calendar_quarter_id,prod_id,
         channel_id,
         promo_id,
         SUM (quantity_sold) quantity_sold,
         SUM (amount_sold) amount_sold
    FROM sales s, times t
   WHERE s.time_id = t.time_id
GROUP BY prod_id,
         channel_id,
         promo_id,
         t.calendar_quarter_id;

這個查看肯定是不能使用物化視圖的,執行計劃如下

Execution Plan
----------------------------------------------------------
Plan hash value: 3221963832

---------------------------------------------------------------------------------------------------------
| Id  | Operation		      | Name	| Rows	| Bytes | Cost (%CPU)| Time	| Pstart| Pstop |
---------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	      | 	|  2037 | 79443 |   569   (6)| 00:00:07 |	|	|
|   1 |  HASH GROUP BY		      | 	|  2037 | 79443 |   569   (6)| 00:00:07 |	|	|
|*  2 |   HASH JOIN		      | 	|   918K|    34M|   546   (2)| 00:00:07 |	|	|
|   3 |    PART JOIN FILTER CREATE    | :BF0000 |  1826 | 21912 |    18   (0)| 00:00:01 |	|	|
|   4 |     TABLE ACCESS FULL	      | TIMES	|  1826 | 21912 |    18   (0)| 00:00:01 |	|	|
|   5 |    PARTITION RANGE JOIN-FILTER| 	|   918K|    23M|   525   (2)| 00:00:07 |:BF0000|:BF0000|
|   6 |     TABLE ACCESS FULL	      | SALES	|   918K|    23M|   525   (2)| 00:00:07 |:BF0000|:BF0000|
---------------------------------------------------------------------------------------------------------


Oracle為了是查詢重寫更加的智能,引入了Dimension的概念。Dimension我們稱之為維,它是基于維度表的,用來描述維度表的維度之間的層級關系。

CREATE DIMENSION SH.TIMES_DIM
  LEVEL DAY                            IS 
    (SH.TIMES.TIME_ID)
  LEVEL MONTH                          IS 
    (SH.TIMES.CALENDAR_MONTH_ID)
  LEVEL QUARTER                        IS 
    (SH.TIMES.CALENDAR_QUARTER_ID)
  LEVEL YEAR                           IS 
    (SH.TIMES.CALENDAR_YEAR_ID)
  HIERARCHY CAL_ROLLUP
    (DAY                               CHILD OF
     MONTH                             CHILD OF
     QUARTER                           CHILD OF
     YEAR);

LEVEL定義等級,基于維度表,HIERARCHY關鍵字定義層級關系。由層級關系,我們知道quarter是由month組成的。

我們再次查詢

SQL> SELECT t.calendar_quarter_id,prod_id,
         channel_id,
         promo_id,
         SUM (quantity_sold) quantity_sold,
         SUM (amount_sold) amount_sold
    FROM sales s, times t
   WHERE s.time_id = t.time_id
GROUP BY prod_id,
         channel_id, 
         promo_id,
         t.calendar_quarter_id;

3375 rows selected.


Execution Plan
----------------------------------------------------------
Plan hash value: 3397140165

--------------------------------------------------------------------------------------------------
| Id  | Operation		       | Name		 | Rows  | Bytes | Cost (%CPU)| Time	 |
--------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	       |		 |    20 |  1720 |    36  (14)| 00:00:01 |
|   1 |  HASH GROUP BY		       |		 |    20 |  1720 |    36  (14)| 00:00:01 |
|*  2 |   HASH JOIN		       |		 |   128K|    10M|    33   (7)| 00:00:01 |
|   3 |    VIEW 		       |		 |   849 |  6792 |    19   (6)| 00:00:01 |
|   4 |     HASH UNIQUE 	       |		 |   849 |  6792 |    19   (6)| 00:00:01 |
|   5 |      TABLE ACCESS FULL	       | TIMES		 |  1826 | 14608 |    18   (0)| 00:00:01 |
|   6 |    MAT_VIEW REWRITE ACCESS FULL| SALES_MONTH_SUM |  9068 |   690K|    13   (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------

這次是使用物化視圖與times表做關聯,性能更高了。

我們對比如下兩個查詢

SQL>   SELECT t.calendar_quarter_id,
         prod_id,
         channel_id,
         promo_id,
         SUM (quantity_sold) quantity_sold,
         SUM (amount_sold) amount_sold
    FROM sales s, times t
   WHERE s.time_id = t.time_id AND t.calendar_quarter_id = 1769
GROUP BY prod_id,
         channel_id,
         promo_id,
         t.calendar_quarter_id; 

168 rows selected.


Execution Plan
----------------------------------------------------------
Plan hash value: 3397140165

--------------------------------------------------------------------------------------------------
| Id  | Operation		       | Name		 | Rows  | Bytes | Cost (%CPU)| Time	 |
--------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	       |		 |     1 |    86 |    33   (7)| 00:00:01 |
|   1 |  HASH GROUP BY		       |		 |     1 |    86 |    33   (7)| 00:00:01 |
|*  2 |   HASH JOIN		       |		 |  6423 |   539K|    32   (4)| 00:00:01 |
|   3 |    VIEW 		       |		 |    34 |   272 |    19   (6)| 00:00:01 |
|   4 |     HASH UNIQUE 	       |		 |    34 |   272 |    19   (6)| 00:00:01 |
|*  5 |      TABLE ACCESS FULL	       | TIMES		 |    90 |   720 |    18   (0)| 00:00:01 |
|   6 |    MAT_VIEW REWRITE ACCESS FULL| SALES_MONTH_SUM |  9068 |   690K|    13   (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------

使用了物化視圖


SQL>SELECT t.calendar_quarter_id,
         prod_id,
         channel_id,
         promo_id,
         SUM (quantity_sold) quantity_sold,
         SUM (amount_sold) amount_sold
    FROM sales s, times t
   WHERE s.time_id = t.time_id AND t.calendar_quarter_desc = '1998-01'
GROUP BY prod_id,
         channel_id,
         promo_id,
         t.calendar_quarter_id;

168 rows selected.


Execution Plan
----------------------------------------------------------
Plan hash value: 3221963832

-----------------------------------------------------------------------------------------------------------------
| Id  | Operation		      | Name	| Rows	| Bytes |TempSpc| Cost (%CPU)| Time	| Pstart| Pstop |
-----------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	      | 	|  8146 |   373K|	|   848   (2)| 00:00:11 |	|	|
|   1 |  HASH GROUP BY		      | 	|  8146 |   373K|  3632K|   848   (2)| 00:00:11 |	|	|
|*  2 |   HASH JOIN		      | 	| 57459 |  2637K|	|   546   (2)| 00:00:07 |	|	|
|   3 |    PART JOIN FILTER CREATE    | :BF0000 |    91 |  1820 |	|    18   (0)| 00:00:01 |	|	|
|*  4 |     TABLE ACCESS FULL	      | TIMES	|    91 |  1820 |	|    18   (0)| 00:00:01 |	|	|
|   5 |    PARTITION RANGE JOIN-FILTER| 	|   918K|    23M|	|   525   (2)| 00:00:07 |:BF0000|:BF0000|
|   6 |     TABLE ACCESS FULL	      | SALES	|   918K|    23M|	|   525   (2)| 00:00:07 |:BF0000|:BF0000|
-----------------------------------------------------------------------------------------------------------------

沒有使用物化視圖。

其實條件實質上是一樣的,因為t.calendar_quarter_desc = '1998-01' 和t.calendar_quarter_id = 1769 在times表中表示相同的數據。

但是Oracle不知道CALENDAR_QUARTER_DESC與CALENDAR_QUARTER_ID的關系。

我們在創建Dimension時,可以為LEVEL指定屬性值。

如下

CREATE DIMENSION SH.TIMES_DIM
  LEVEL DAY                            IS 
    (SH.TIMES.TIME_ID)
  LEVEL MONTH                          IS 
    (SH.TIMES.CALENDAR_MONTH_ID)
  LEVEL QUARTER                        IS 
    (SH.TIMES.CALENDAR_QUARTER_ID)
  LEVEL YEAR                           IS 
    (SH.TIMES.CALENDAR_YEAR_ID)
  HIERARCHY CAL_ROLLUP
    (DAY                               CHILD OF
     MONTH                             CHILD OF
     QUARTER                           CHILD OF
     YEAR)
  ATTRIBUTE QUARTER DETERMINES 
    (SH.TIMES.CALENDAR_QUARTER_DESC,
     SH.TIMES.DAYS_IN_CAL_QUARTER,
     SH.TIMES.END_OF_CAL_QUARTER,
     SH.TIMES.CALENDAR_QUARTER_NUMBER)
  ATTRIBUTE YEAR DETERMINES 
    (SH.TIMES.CALENDAR_YEAR,
     SH.TIMES.DAYS_IN_CAL_YEAR,
     SH.TIMES.END_OF_CAL_YEAR);


我們再次查詢

SQL> SELECT t.calendar_quarter_id,
         prod_id,
         channel_id,
         promo_id,
         SUM (quantity_sold) quantity_sold,
         SUM (amount_sold) amount_sold
    FROM sales s, times t
   WHERE s.time_id = t.time_id AND t.calendar_quarter_desc = '1998-01'
GROUP BY prod_id,
         channel_id,
         promo_id,
         t.calendar_quarter_id;  

168 rows selected.


Execution Plan
----------------------------------------------------------
Plan hash value: 3290467316

--------------------------------------------------------------------------------------------------
| Id  | Operation		       | Name		 | Rows  | Bytes | Cost (%CPU)| Time	 |
--------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	       |		 |    20 |  2240 |    33   (7)| 00:00:01 |
|   1 |  HASH GROUP BY		       |		 |    20 |  2240 |    33   (7)| 00:00:01 |
|*  2 |   HASH JOIN		       |		 | 17191 |  1880K|    32   (4)| 00:00:01 |
|   3 |    VIEW 		       | VW_GBF_5	 |    91 |  3094 |    19   (6)| 00:00:01 |
|   4 |     HASH GROUP BY	       |		 |    91 |   728 |    19   (6)| 00:00:01 |
|   5 |      VIEW		       |		 |    91 |   728 |    19   (6)| 00:00:01 |
|   6 |       HASH UNIQUE	       |		 |    91 |  1456 |    19   (6)| 00:00:01 |
|*  7 |        TABLE ACCESS FULL       | TIMES		 |    91 |  1456 |    18   (0)| 00:00:01 |
|   8 |    MAT_VIEW REWRITE ACCESS FULL| SALES_MONTH_SUM |  9068 |   690K|    13   (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------

這次就使用了物化視圖。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

保靖县| 固镇县| 德兴市| 兴宁市| 丹凤县| 仁布县| 昂仁县| 南安市| 霍州市| 北京市| 永平县| 东至县| 咸阳市| 渑池县| 城固县| 洮南市| 教育| 遂川县| 襄垣县| 松滋市| 罗甸县| 法库县| 巴东县| 石屏县| 伊吾县| 阿尔山市| 凤凰县| 西充县| 汝城县| 东兴市| 芦溪县| 富阳市| 武义县| 四子王旗| 大石桥市| 定南县| 舟山市| 石景山区| 民勤县| 信阳市| 宁城县|