亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

詳解Linux輸入子系統框架的原理

發布時間:2020-11-03 19:58:00 來源:億速云 閱讀:244 作者:Leah 欄目:開發技術

這期內容當中小編將會給大家帶來有關詳解Linux輸入子系統框架的原理,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

input輸入子系統框架

linux輸入子系統(linux input subsystem)從上到下由三層實現,分別為:輸入子系統事件處理層(EventHandler)、輸入子系統核心層(InputCore)和輸入子系統設備驅動層。

一個輸入事件,如鼠標移動,鍵盤按鍵按下,joystick的移動等等通過 input driver -> Input core -> Event handler -> userspace 到達用戶空間傳給應用程序。

詳解Linux輸入子系統框架的原理

【注意】keyboard.c不會在/dev/input下產生節點,而是作為ttyn終端(不包括串口終端)的輸入。

驅動層

對于輸入子系統設備驅動層而言,主要實現對硬件設備的讀寫訪問,中斷設置,并把硬件產生的事件轉換為核心層定義的規范提交給事件處理層。將底層的硬件輸入轉化為統一事件形式,想輸入核心(Input Core)匯報。

輸入子系統核心層

對于核心層而言,為設備驅動層提供了規范和接口。設備驅動層只要關心如何驅動硬件并獲得硬件數據(例如按下的按鍵數據),然后調用核心層提供的接口,核心層會自動把數據提交給事件處理層。它承上啟下為驅動層提供輸入設備注冊與操作接口,如:input_register_device;通知事件處理層對事件進行處理;在/Proc下產生相應的設備信息。

事件處理層

對于事件處理層而言,則是用戶編程的接口(設備節點),并處理驅動層提交的數據處理。主要是和用戶空間交互(Linux中在用戶空間將所有的設備都當作文件來處理,由于在一般的驅動程序中都有提供fops接口,以及在/dev下生成相應的設備文件nod,這些操作在輸入子系統中由事件處理層完成)。

/dev/input目錄下顯示的是已經注冊在內核中的設備編程接口,用戶通過open這些設備文件來打開不同的輸入設備進行硬件操作。

事件處理層為不同硬件類型提供了用戶訪問及處理接口。例如當我們打開設備/dev/input/mice時,會調用到事件處理層的Mouse Handler來處理輸入事件,這也使得設備驅動層無需關心設備文件的操作,因為Mouse Handler已經有了對應事件處理的方法。

輸入子系統由內核代碼drivers/input/input.c構成,它的存在屏蔽了用戶到設備驅動的交互細節,為設備驅動層和事件處理層提供了相互通信的統一界面。

詳解Linux輸入子系統框架的原理

由上圖可知輸入子系統核心層提供的支持以及如何上報事件到input event drivers。

作為輸入設備的驅動開發者,需要做以下幾步:

  • 在驅動加載模塊中,設置你的input設備支持的事件類型
  • 注冊中斷處理函數,例如鍵盤設備需要編寫按鍵的抬起、放下,觸摸屏設備需要編寫按下、抬起、絕對移動,鼠標設備需要編寫單擊、抬起、相對移動,并且需要在必要的時候提交硬件數據(鍵值/坐標/狀態等等)
  • 將輸入設備注冊到輸入子系統中

///////////////////////////////////////////////////////////////////分割線/////////////////////////////////////////////////////////////////////////////////

輸入核心提供了底層輸入設備驅動程序所需的API,如分配/釋放一個輸入設備:

struct input_dev *input_allocate_device(void);
void input_free_device(struct input_dev *dev);

/**
 * input_allocate_device - allocate memory for new input device
 *
 * Returns prepared struct input_dev or NULL.
 *
 * NOTE: Use input_free_device() to free devices that have not been
 * registered; input_unregister_device() should be used for already
 * registered devices.
 */
struct input_dev *input_allocate_device(void)
{
  struct input_dev *dev;
     /*分配一個input_dev結構體,并初始化為0*/ 
  dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  if (dev) {
    dev->dev.type = &input_dev_type;/*初始化設備的類型*/ 
    dev->dev.class = &input_class; /*設置為輸入設備類*/ 
    device_initialize(&dev->dev);/*初始化device結構*/ 
    mutex_init(&dev->mutex); /*初始化互斥鎖*/ 
    spin_lock_init(&dev->event_lock); /*初始化事件自旋鎖*/ 
    INIT_LIST_HEAD(&dev->h_list);/*初始化鏈表*/ 
    INIT_LIST_HEAD(&dev->node); /*初始化鏈表*/ 

    __module_get(THIS_MODULE);/*模塊引用技術加1*/ 
  }

  return dev;
}

注冊/注銷輸入設備用的接口如下:

int __must_check input_register_device(struct input_dev *);
void input_unregister_device(struct input_dev *);

/**
 * input_register_device - register device with input core
 * @dev: device to be registered
 *
 * This function registers device with input core. The device must be
 * allocated with input_allocate_device() and all it's capabilities
 * set up before registering.
 * If function fails the device must be freed with input_free_device().
 * Once device has been successfully registered it can be unregistered
 * with input_unregister_device(); input_free_device() should not be
 * called in this case.
 */
int input_register_device(struct input_dev *dev)
{
    //定義一些函數中將用到的局部變量
  static atomic_t input_no = ATOMIC_INIT(0);
  struct input_handler *handler;
  const char *path;
  int error;
  //設置 input_dev 所支持的事件類型,由 evbit 成員來表示。具體類型在后面歸納。
  /* Every input device generates EV_SYN/SYN_REPORT events. */
  __set_bit(EV_SYN, dev->evbit);

  /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  __clear_bit(KEY_RESERVED, dev->keybit);

  /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  input_cleanse_bitmasks(dev);

   //初始化 timer 定時器,用來處理重復點擊按鍵。(去抖)
  /*
   * If delay and period are pre-set by the driver, then autorepeating
   * is handled by the driver itself and we don't do it in input.c.
   */
  init_timer(&dev->timer);
    //如果 rep[REP_DELAY] 和 [REP_PERIOD] 沒有設值,則賦默認值。為了去抖。
  if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
    dev->timer.data = (long) dev;
    dev->timer.function = input_repeat_key;
    dev->rep[REP_DELAY] = 250;
    dev->rep[REP_PERIOD] = 33;
  }
   //檢查下列兩個函數是否被定義,沒有被定義則賦默認值。
  if (!dev->getkeycode)
    dev->getkeycode = input_default_getkeycode;//得到指定位置鍵值

  if (!dev->setkeycode)
    dev->setkeycode = input_default_setkeycode;//設置指定位置鍵值
    //設置 input_dev 中 device 的名字為 inputN
    //將如 input0 input1 input2 出現在 sysfs 文件系統中
  dev_set_name(&dev->dev, "input%ld",
       (unsigned long) atomic_inc_return(&input_no) - 1);
    //將 input->dev 包含的 device 結構注冊到 Linux 設備模型中。
  error = device_add(&dev->dev);
  if (error)
    return error;
  //打印設備的路徑并輸出調試信息
  path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  printk(KERN_INFO "input: %s as %s\n",
    dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  kfree(path);

  error = mutex_lock_interruptible(&input_mutex);
  if (error) {
    device_del(&dev->dev);
    return error;
  }
    //將 input_dev 加入 input_dev_list 鏈表中(這個鏈表中包含有所有 input 設備)
  list_add_tail(&dev->node, &input_dev_list);

  list_for_each_entry(handler, &input_handler_list, node)
   //調用 input_attatch_handler()函數匹配 handler 和 input_dev。
    //這個函數很重要,在后面單獨分析。
    input_attach_handler(dev, handler);

  input_wakeup_procfs_readers();

  mutex_unlock(&input_mutex);

  return 0;
}

而對于所有的輸入事件,內核都用統一的數據結構來描述,這個數據結構是input_event

/*
 * The event structure itself
 */

struct input_event {
  struct timeval time; //<輸入事件發生的時間
  __u16 type;     //<輸入事件的類型
  __u16 code;     //<在輸入事件類型下的編碼
  __s32 value;     //<code的值
};

輸入事件的類型--input_event.type

/*
 * Event types
 */

#define EV_SYN      0x00 //< 同步事件
#define EV_KEY      0x01 //< 按鍵事件
#define EV_REL      0x02 //<相對坐標(如:鼠標移動,報告相對最后一次位置的偏移) 
#define EV_ABS      0x03 //< 絕對坐標(如:觸摸屏或操作桿,報告絕對的坐標位置) 
#define EV_MSC      0x04 //< 其它 
#define EV_SW       0x05 //<開關 
#define EV_LED      0x11 //<按鍵/設備燈 
#define EV_SND      0x12 //<聲音/警報 
#define EV_REP      0x14 //<重復 
#define EV_FF       0x15 //<力反饋 
#define EV_PWR      0x16 //<電源 
#define EV_FF_STATUS   0x17 //<力反饋狀態 
#define EV_MAX      0x1f //< 事件類型最大個數和提供位掩碼支持 
#define EV_CNT      (EV_MAX+1)

Linux輸入子系統提供了設備驅動層上報輸入事件的函數

報告輸入事件用的接口如下:

/* 報告指定type、code的輸入事件 */
void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
/* 報告鍵值 */
static inline void input_report_key(struct input_dev *dev, unsigned int code, int value)
{
  input_event(dev, EV_KEY, code, !!value);
}
/* 報告相對坐標 */
static inline void input_report_rel(struct input_dev *dev, unsigned int code, int value)
{
  input_event(dev, EV_REL, code, value);
}
/* 報告絕對坐標 */
static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value)
{
  input_event(dev, EV_ABS, code, value);
}
...

當提交輸入設備產生的輸入事件之后,需要調用下面的函數來通知輸入子系統,以處理設備產生的完整事件:

void input_sync(struct input_dev *dev);

【例子】驅動實現——報告結束input_sync()同步用于告訴input core子系統報告結束,觸摸屏設備驅動中,一次點擊的整個報告過程如下:

input_reprot_abs(input_dev,ABS_X,x); //x坐標
input_reprot_abs(input_dev,ABS_Y,y); // y坐標
input_reprot_abs(input_dev,ABS_PRESSURE,1);
input_sync(input_dev);//同步結束

【例子】按鍵中斷程序

//按鍵初始化
static int __init button_init(void)
{//申請中斷
  if(request_irq(BUTTON_IRQ,button_interrupt,0,”button”,NUll))
    return –EBUSY;
  set_bit(EV_KEY,button_dev.evbit); //支持EV_KEY事件
  set_bit(BTN_0,button_dev.keybit); //支持設備兩個鍵
  set_bit(BTN_1,button_dev.keybit); //
  input_register_device(&button_dev);//注冊input設備
}
/*在按鍵中斷中報告事件*/
Static void button_interrupt(int irq,void *dummy,struct pt_regs *fp)
{
  input_report_key(&button_dev,BTN_0,inb(BUTTON_PORT0));//讀取寄存器BUTTON_PORT0的值
  input_report_key(&button_dev,BTN_1,inb(BUTTON_PORT1));
  input_sync(&button_dev);
}

【小結】input子系統仍然是字符設備驅動程序,但是代碼量減少很多,input子系統只需要完成兩個工作:初始化和事件報告(這里在linux中是通過中斷來實現的)。

Event Handler層解析

Input輸入子系統數據結構關系圖

詳解Linux輸入子系統框架的原理

input_handler結構體

struct input_handle;

/**
 * struct input_handler - implements one of interfaces for input devices
 * @private: driver-specific data
 * @event: event handler. This method is being called by input core with
 *  interrupts disabled and dev->event_lock spinlock held and so
 *  it may not sleep
 * @filter: similar to @event; separates normal event handlers from
 *  "filters".
 * @match: called after comparing device's id with handler's id_table
 *  to perform fine-grained matching between device and handler
 * @connect: called when attaching a handler to an input device
 * @disconnect: disconnects a handler from input device
 * @start: starts handler for given handle. This function is called by
 *  input core right after connect() method and also when a process
 *  that "grabbed" a device releases it
 * @fops: file operations this driver implements
 * @minor: beginning of range of 32 minors for devices this driver
 *  can provide
 * @name: name of the handler, to be shown in /proc/bus/input/handlers
 * @id_table: pointer to a table of input_device_ids this driver can
 *  handle
 * @h_list: list of input handles associated with the handler
 * @node: for placing the driver onto input_handler_list
 *
 * Input handlers attach to input devices and create input handles. There
 * are likely several handlers attached to any given input device at the
 * same time. All of them will get their copy of input event generated by
 * the device.
 *
 * The very same structure is used to implement input filters. Input core
 * allows filters to run first and will not pass event to regular handlers
 * if any of the filters indicate that the event should be filtered (by
 * returning %true from their filter() method).
 *
 * Note that input core serializes calls to connect() and disconnect()
 * methods.
 */
struct input_handler {

  void *private;

  void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
  bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
  bool (*match)(struct input_handler *handler, struct input_dev *dev);
  int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);
  void (*disconnect)(struct input_handle *handle);
  void (*start)(struct input_handle *handle);

  const struct file_operations *fops;
  int minor;
  const char *name;

  const struct input_device_id *id_table;

  struct list_head  h_list;
  struct list_head  node;
};

【例子】以evdev.c中的evdev_handler為例:

static struct input_handler evdev_handler = {
        .event = evdev_event, //<向系統報告input事件,系統通過read方法讀取
        .connect = evdev_connect, //<和input_dev匹配后調用connect構建
        .disconnect = evdev_disconnect,
        .fops = &evdev_fops, //<event設備文件的操作方法
        .minor = EVDEV_MINOR_BASE, //<次設備號基準值
        .name = "evdev",
        .id_table = evdev_ids, //<匹配規則
    };

輸入設備驅動的簡單案例

documentation/input/input-programming.txt文件,講解了編寫輸入設備驅動程序的核心步驟。

Programming input drivers
~~~~~~~~~~~~~~~~~~~~~~~~~

1. Creating an input device driver
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.0 The simplest example
~~~~~~~~~~~~~~~~~~~~~~~~

Here comes a very simple example of an input device driver. The device has
just one button and the button is accessible at i/o port BUTTON_PORT. When
pressed or released a BUTTON_IRQ happens. The driver could look like:

#include <linux/input.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/irq.h>
#include <asm/io.h>

static struct input_dev *button_dev;

static irqreturn_t button_interrupt(int irq, void *dummy)
{
  input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1);
  input_sync(button_dev);
  return IRQ_HANDLED;
}

static int __init button_init(void)
{
  int error;

  if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
        printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
        return -EBUSY;
    }

  button_dev = input_allocate_device();
  if (!button_dev) {
    printk(KERN_ERR "button.c: Not enough memory\n");
    error = -ENOMEM;
    goto err_free_irq;
  }

  button_dev->evbit[0] = BIT_MASK(EV_KEY);
  button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0);

  error = input_register_device(button_dev);
  if (error) {
    printk(KERN_ERR "button.c: Failed to register device\n");
    goto err_free_dev;
  }

  return 0;

 err_free_dev:
  input_free_device(button_dev);
 err_free_irq:
  free_irq(BUTTON_IRQ, button_interrupt);
  return error;
}

static void __exit button_exit(void)
{
    input_unregister_device(button_dev);
  free_irq(BUTTON_IRQ, button_interrupt);
}

module_init(button_init);
module_exit(button_exit);

1.1 What the example does
~~~~~~~~~~~~~~~~~~~~~~~~~

First it has to include the <linux/input.h> file, which interfaces to the
input subsystem. This provides all the definitions needed.

In the _init function, which is called either upon module load or when
booting the kernel, it grabs the required resources (it should also check
for the presence of the device).

Then it allocates a new input device structure with input_allocate_device()
and sets up input bitfields. This way the device driver tells the other
parts of the input systems what it is - what events can be generated or
accepted by this input device. Our example device can only generate EV_KEY
type events, and from those only BTN_0 event code. Thus we only set these
two bits. We could have used

  set_bit(EV_KEY, button_dev.evbit);
  set_bit(BTN_0, button_dev.keybit);

as well, but with more than single bits the first approach tends to be
shorter.

Then the example driver registers the input device structure by calling

  input_register_device(&button_dev);

This adds the button_dev structure to linked lists of the input driver and
calls device handler modules _connect functions to tell them a new input
device has appeared. input_register_device() may sleep and therefore must
not be called from an interrupt or with a spinlock held.

While in use, the only used function of the driver is

  button_interrupt()

which upon every interrupt from the button checks its state and reports it
via the

  input_report_key()

call to the input system. There is no need to check whether the interrupt
routine isn't reporting two same value events (press, press for example) to
the input system, because the input_report_* functions check that
themselves.

Then there is the

  input_sync()

call to tell those who receive the events that we've sent a complete report.
This doesn't seem important in the one button case, but is quite important
for for example mouse movement, where you don't want the X and Y values
to be interpreted separately, because that'd result in a different movement.

1.2 dev->open() and dev->close()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In case the driver has to repeatedly poll the device, because it doesn't
have an interrupt coming from it and the polling is too expensive to be done
all the time, or if the device uses a valuable resource (eg. interrupt), it
can use the open and close callback to know when it can stop polling or
release the interrupt and when it must resume polling or grab the interrupt
again. To do that, we would add this to our example driver:

static int button_open(struct input_dev *dev)
{
  if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
        printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
        return -EBUSY;
    }

    return 0;
}

static void button_close(struct input_dev *dev)
{
    free_irq(IRQ_AMIGA_VERTB, button_interrupt);
}

static int __init button_init(void)
{
  ...
  button_dev->open = button_open;
  button_dev->close = button_close;
  ...
}

Note that input core keeps track of number of users for the device and
makes sure that dev->open() is called only when the first user connects
to the device and that dev->close() is called when the very last user
disconnects. Calls to both callbacks are serialized.

The open() callback should return a 0 in case of success or any nonzero value
in case of failure. The close() callback (which is void) must always succeed.

1.3 Basic event types
~~~~~~~~~~~~~~~~~~~~~

The most simple event type is EV_KEY, which is used for keys and buttons.
It's reported to the input system via:

  input_report_key(struct input_dev *dev, int code, int value)

See linux/input.h for the allowable values of code (from 0 to KEY_MAX).
Value is interpreted as a truth value, ie any nonzero value means key
pressed, zero value means key released. The input code generates events only
in case the value is different from before.

In addition to EV_KEY, there are two more basic event types: EV_REL and
EV_ABS. They are used for relative and absolute values supplied by the
device. A relative value may be for example a mouse movement in the X axis.
The mouse reports it as a relative difference from the last position,
because it doesn't have any absolute coordinate system to work in. Absolute
events are namely for joysticks and digitizers - devices that do work in an
absolute coordinate systems.

Having the device report EV_REL buttons is as simple as with EV_KEY, simply
set the corresponding bits and call the

  input_report_rel(struct input_dev *dev, int code, int value)

function. Events are generated only for nonzero value.

However EV_ABS requires a little special care. Before calling
input_register_device, you have to fill additional fields in the input_dev
struct for each absolute axis your device has. If our button device had also
the ABS_X axis:

  button_dev.absmin[ABS_X] = 0;
  button_dev.absmax[ABS_X] = 255;
  button_dev.absfuzz[ABS_X] = 4;
  button_dev.absflat[ABS_X] = 8;

Or, you can just say:

  input_set_abs_params(button_dev, ABS_X, 0, 255, 4, 8);

This setting would be appropriate for a joystick X axis, with the minimum of
0, maximum of 255 (which the joystick *must* be able to reach, no problem if
it sometimes reports more, but it must be able to always reach the min and
max values), with noise in the data up to +- 4, and with a center flat
position of size 8.

If you don't need absfuzz and absflat, you can set them to zero, which mean
that the thing is precise and always returns to exactly the center position
(if it has any).

1.4 BITS_TO_LONGS(), BIT_WORD(), BIT_MASK()
~~~~~~~~~~~~~~~~~~~~~~~~~~

These three macros from bitops.h help some bitfield computations:

  BITS_TO_LONGS(x) - returns the length of a bitfield array in longs for
        x bits
  BIT_WORD(x)   - returns the index in the array in longs for bit x
  BIT_MASK(x)   - returns the index in a long for bit x

1.5 The id* and name fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The dev->name should be set before registering the input device by the input
device driver. It's a string like 'Generic button device' containing a
user friendly name of the device.

The id* fields contain the bus ID (PCI, USB, ...), vendor ID and device ID
of the device. The bus IDs are defined in input.h. The vendor and device ids
are defined in pci_ids.h, usb_ids.h and similar include files. These fields
should be set by the input device driver before registering it.

The idtype field can be used for specific information for the input device
driver.

The id and name fields can be passed to userland via the evdev interface.

1.6 The keycode, keycodemax, keycodesize fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

These three fields should be used by input devices that have dense keymaps.
The keycode is an array used to map from scancodes to input system keycodes.
The keycode max should contain the size of the array and keycodesize the
size of each entry in it (in bytes).

Userspace can query and alter current scancode to keycode mappings using
EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on corresponding evdev interface.
When a device has all 3 aforementioned fields filled in, the driver may
rely on kernel's default implementation of setting and querying keycode
mappings.

1.7 dev->getkeycode() and dev->setkeycode()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getkeycode() and setkeycode() callbacks allow drivers to override default
keycode/keycodesize/keycodemax mapping mechanism provided by input core
and implement sparse keycode maps.

1.8 Key autorepeat
~~~~~~~~~~~~~~~~~~

... is simple. It is handled by the input.c module. Hardware autorepeat is
not used, because it's not present in many devices and even where it is
present, it is broken sometimes (at keyboards: Toshiba notebooks). To enable
autorepeat for your device, just set EV_REP in dev->evbit. All will be
handled by the input system.

1.9 Other event types, handling output events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The other event types up to now are:

EV_LED - used for the keyboard LEDs.
EV_SND - used for keyboard beeps.

They are very similar to for example key events, but they go in the other
direction - from the system to the input device driver. If your input device
driver can handle these events, it has to set the respective bits in evbit,
*and* also the callback routine:

  button_dev->event = button_event;

int button_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
{
  if (type == EV_SND && code == SND_BELL) {
    outb(value, BUTTON_BELL);
    return 0;
  }
  return -1;
}

This callback routine can be called from an interrupt or a BH (although that
isn't a rule), and thus must not sleep, and must not take too long to finish.

input-programming.txt

該例子提供的案例代碼描述了一個button設備,產生的事件通過BUTTON_PORT引腳獲取,當有按下/釋放發生時,BUTTON_IRQ被觸發,以下是驅動的源代碼:

#include <linux/input.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/irq.h>
#include <asm/io.h>

static struct input_dev *button_dev; /*輸入設備結構體*/ 
/*中斷處理函數*/ 
static irqreturn_t button_interrupt(int irq, void *dummy)
{
  /*向輸入子系統報告產生按鍵事件*/ 
  input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1);
  /*通知接收者,一個報告發送完畢*/ 
  input_sync(button_dev);
  return IRQ_HANDLED;
}
/*加載函數*/ 
static int __init button_init(void)
{
  int error;
  /*申請中斷處理函數*/ //返回0表示成功,返回-INVAL表示無效
  if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
        /*申請失敗,則打印出錯信息*/ 
        printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
        return -EBUSY;
    }
  /*分配一個設備結構體*/ 
  //將在 sys/class/input/input-n 下面創建設備屬性文件
  button_dev = input_allocate_device();
  if (!button_dev) {   /*判斷分配是否成功*/ 
    printk(KERN_ERR "button.c: Not enough memory\n");
    error = -ENOMEM;
    goto err_free_irq;
  }

  button_dev->evbit[0] = BIT_MASK(EV_KEY); /*設置按鍵信息*/ 
  button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0);

  error = input_register_device(button_dev); /*注冊一個輸入設備*/ 
  if (error) {
    printk(KERN_ERR "button.c: Failed to register device\n");
    goto err_free_dev;
  }

  return 0;
 /*以下是錯誤處理*/ 
 err_free_dev:
  input_free_device(button_dev);
 err_free_irq:
  free_irq(BUTTON_IRQ, button_interrupt);
  return error;
}
 /*卸載函數*/ 
static void __exit button_exit(void)
{
  input_unregister_device(button_dev); /*注銷按鍵設備*/ 
  free_irq(BUTTON_IRQ, button_interrupt);/*釋放按鍵占用的中斷線*/ 
}

module_init(button_init);
module_exit(button_exit);

從這個簡單的例子中可以看到。

  • 在初始化函數 button_init() 中注冊了一個中斷處理函數,然后調用 input_allocate_device() 函數分配了一個 input_dev 結構體,并調用 input_register_device() 對其進行注冊。
  • 在中斷處理函數 button_interrupt() 中,實例將接收到的按鍵信息上報給 input 子系統,從而通過 input子系統,向用戶態程序提供按鍵輸入信息。

上述就是小編為大家分享的詳解Linux輸入子系統框架的原理了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

东丽区| 友谊县| 绵竹市| 莱芜市| 大荔县| 修水县| 福鼎市| 忻城县| 措美县| 若尔盖县| 明星| 珠海市| 会同县| 新密市| 沙洋县| 通化市| 牡丹江市| 来凤县| 邵阳县| 巴林左旗| 溧水县| 伊通| 金山区| 渭南市| 碌曲县| 尼木县| 荃湾区| 延吉市| 社旗县| 托克逊县| 汽车| 道真| 建宁县| 阿荣旗| 靖州| 隆昌县| 南丹县| 咸宁市| 屏东县| 韶山市| 莱州市|