亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python中yield和yield from的使用方法

發布時間:2020-08-27 10:29:09 來源:億速云 閱讀:173 作者:小新 欄目:編程語言

這篇文章將為大家詳細講解有關python中yield和yield from的使用方法,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。

                                                       

python yield和yield from用法總結

yield 作用:

注: generator的next()方法在python 2中為next(),但在python 3中為 __next__() 【next的前后各是兩個下劃線】

  把一個函數變成一個generator,帶有yield的函數不再是一個普通函數。即:一個帶有 yield 的函數就是一個 generator,它和普通函數不同,生成一個 generator 看起來像函數調用,但不會執行任何函數代碼,直到對其調用 next()(在 for 循環中會自動調用 next())才開始執行。雖然執行流程仍按函數的流程執行,但每執行到一個 yield 語句就會中斷,并返回一個迭代值,下次執行時從 yield 的下一個語句繼續執行。看起來就好像一個函數在正常執行的過程中被 yield 中斷了數次,每次中斷都會通過 yield 返回當前的迭代值。

yield 的好處是顯而易見的,把一個函數改寫為一個 generator 就獲得了迭代能力,比起用類的實例保存狀態來計算下一個 next() 的值,不僅代碼簡潔,而且執行流程異常清晰。

用print實現打印斐波拉切數列 ——基礎版

#!/usr/bin/env python
# -*- coding: utf-8 -*-def fab(max):
    n , a, b = 0, 0 , 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1if __name__ == '__main__':
    fab(6)  # 1 1 2 3 5 8

用yield實現打印斐波拉切數列——升級版

#!/usr/bin/env python
# -*- coding: utf-8 -*-def fab(max):
    n , a, b = 0, 0 , 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1if __name__ == '__main__':
    for n in fab(6): # 1 1 2 3 5 8
        print(n)

如何判斷一個函數是否是一個特殊的generator函數

#!/usr/bin/env python
# -*- coding: utf-8 -*-from inspect import isgeneratorfunction

def fab(max):
    n , a, b = 0, 0 , 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1if __name__ == '__main__':
    f1 = fab(3)
    # True fab是一個generator function
    print(isgeneratorfunction(fab))

    # False fab(3)不是一個generator function
    # 而fab(3)是調用fab返回的一個generator    print(isgeneratorfunction(fab(3)))

用yield實現大文件讀取

#!/usr/bin/env python
# -*- coding: utf-8 -*-def read_file(fpath):
    BLOCK_SIZE = 100
    with open(fpath, "rb") as f:
        while True:
            block = f.read(BLOCK_SIZE)
            if block:
                yield block            else:
                returnif __name__ == '__main__':
    fpath = "/home/exercise-python3.7.1/vote/mysite/mysite/polls/test.txt"
    read_gen = read_file(fpath)

    print(read_gen.__next__())
    print(read_gen.__next__())
    print(read_gen.__next__())
    print(read_gen.__next__())

    # for循環會自動調用generatr的__next__()方法,故輸出效果同如上的4個print  【內容較短,4個print就將test.txt中的內容輸出完了】    for data in read_gen:
        print(data)

yield 和 yield from 用法對比

使用yield拼接可迭代對象

#!/usr/bin/env python
# -*- coding: utf-8 -*-if __name__ == '__main__':
    astr = "ABC"
    alist = [1, 2, 3]
    adict = {"name": "wangbm", "age": 18}
    # generate
    agen = (i for i in range(4, 8))

    def gen(*args, **kw):
        for item in args:
            for i in item:
                yield i

    new_list = gen(astr, alist, adict, agen)
    print(list(new_list))
    # ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]

使用yield from拼接可迭代對象

#!/usr/bin/env python
# -*- coding: utf-8 -*-if __name__ == '__main__':
    astr = "ABC"
    alist = [1, 2, 3]
    adict = {"name": "wangbm", "age": 18}
    # generate
    agen = (i for i in range(4, 8))

    def gen(*args, **kw):
        for item in args:
            yield from item

    new_list = gen(astr, alist, adict, agen)
    print(list(new_list))
    # ['A', 'B', 'C', 1, 2, 3, 'name', 'age', 4, 5, 6, 7]

結論:
  由上面兩種方式對比,可以看出,yield from后面加上可迭代對象,他可以把可迭代對象里的每個元素一個一個的yield出來,對比yield來說代碼更加簡潔,結構更加清晰。

關于python中yield和yield from的使用方法就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

五河县| 金堂县| 周口市| 吴桥县| 凤阳县| 杭锦后旗| 沧州市| 额敏县| 民丰县| 鹤庆县| 丰都县| 钟祥市| 梨树县| 上思县| 吉木萨尔县| 高雄市| 陈巴尔虎旗| 平乐县| 乐都县| 宜兰县| 衡水市| 和林格尔县| 南康市| 漳平市| 翁源县| 确山县| 扶沟县| 东山县| 丹阳市| 江阴市| 吴桥县| 海原县| 石泉县| 中方县| 西乌珠穆沁旗| 黑龙江省| 泾阳县| 东阳市| 余干县| 澳门| 七台河市|