亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

怎么在Ubuntu 18.04服務器上安裝TensorFlow

發布時間:2021-11-18 10:53:52 來源:億速云 閱讀:169 作者:小新 欄目:互聯網科技

小編給大家分享一下怎么在Ubuntu 18.04服務器上安裝TensorFlow,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

我們假設使用64位的操作系統,顯卡為GeForce 740m。SSH登錄到服務器,更新和升級:

apt update -y
apt upgrade –y

運行這個命令來安裝Python庫:

sudo apt install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy python-six python3-six build-essential python-pip python3-pip python-virtualenv swig python-wheel python3-wheel libcurl3-dev libcupti-dev

繼續運行

sudo apt install libcurl4-openssl-dev

通過運行,我們可以看到安裝的顯卡硬件:

sudo lshw -C display | grep product

我們需要安裝Nvidia驅動程序。我們可以檢查SSH上的圖形驅動程序:

nvidia-smi

這是Ubuntu的PPA,瀏覽一下:

https://launchpad.net/~graphics-drivers/+archive/ubuntu/ppa

nvidia-graphics-drivers-396是最新的,但可能沒有太多測試。我們可以添加 nvidia-graphics-drivers-390 PPA 并安裝該應用程序。

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt upgrade
ubuntu-drivers devices
sudo ubuntu-drivers autoinstall

如果有意外情況,autoinstall不起作用,則運行:

sudo apt install nvidia-390

現在,再次運行命令:

nvidia-smi

您將得到一個有用的輸出。我們應該保持住這個版本停止升級。

sudo apt-mark hold nvidia-driver-390

安裝 Linux—headers :

sudo apt install linux-headers-$(uname -r)

為了后續步驟正常進行,我們需要 gcc, g++ 等等:

apt install gcc g++ gcc-6 g++-6 gcc-4.8 g++-4.8
# if gcc-4.8 package not found run
# sudo add-apt-repository ppa:ubuntu-toolchain-r/test
# sudo apt update
# sudo apt install gcc-4.8 g++-4.8

現在我們必須安裝CUDA工具包:

apt install nvidia-cuda-toolkit libcupti-dev

重啟

sudo reboot

安裝CUDA工具包:

https://developer.nvidia.com/cuda-toolkit

運行:

cd Downloads/
sudo sh cuda_9.0.176_384.81_linux.run --override --silent –toolkit

接下來,您需要安裝CUDNN,NCCL。您需要按照PyTorch老方法,使用Nvdia帳戶登錄,這很簡單。您將獲得鏈接:cuDNN v7.1.x Library for Linux。您需要下載deb文件,并將FTP上傳到服務器。URL是:

https://developer.nvidia.com/rdp/cudnn-download

https://developer.nvidia.com/nccl

找到已安裝CUDA的目錄。它正在將文件復制到/usr/local/cuda/。將上述內容移到安裝CUDA的目錄中并運行這些操作(注意版本編號的目錄,以下是格式示例):

tar -xzvf cudnn-9.0-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

以上將節省空間,并避免apt警告。打開配置文件,如.bashrc:

nano ~/.bashrc

添加這些:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda

重新加載:

source ~/.bashrc
sudo ldconfig
echo $CUDA_HOME

安裝Bazel:

sudo apt install curl
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
sudo apt update -y
sudo apt upgrade -y
sudo apt install bazel
sudo apt upgrade bazel
pip install keras

查看Nvidia版本:

cd ~
git clone https://github.com/tensorflow/tensorflow
cd ~/tensorflow
# check current revision number from browser
git checkout r1.11
cd ~/tensorflow

通過運行創建配置文件:

./configure

您將得到這樣的輸出:

Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3
Do you wish to build TensorFlow with jemalloc as malloc support? [Y/n]: Y
Do you wish to build TensorFlow with Google Cloud Platform support? [Y/n]: N
Do you wish to build TensorFlow with Hadoop File System support? [Y/n]: N
Do you wish to build TensorFlow with Amazon S3 File System support? [Y/n]: N
Do you wish to build TensorFlow with Apache Kafka Platform support? [y/N]: N
Do you wish to build TensorFlow with XLA JIT support? [y/N]: N
Do you wish to build TensorFlow with GDR support? [y/N]: N
Do you wish to build TensorFlow with VERBS support? [y/N]: N
Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: N
Do you wish to build TensorFlow with CUDA support? [y/N]: Y
Please specify the CUDA SDK version you want to use, e.g. 7.0. [Leave empty to default to CUDA 9.0]: 9.0
Please specify the location where CUDA 9.1 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda
Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7.0]: 7.1
Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda
Do you wish to build TensorFlow with TensorRT support? [y/N]: N
Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 5.0] 3.0
Do you want to use clang as CUDA compiler? [y/N]: N
Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: /usr/bin/gcc-4.8
Do you wish to build TensorFlow with MPI support? [y/N]: N
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: -march=native
Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]:N

構建TensorFlow :

最后的步驟:

bazel-bin/tensorflow/tools/pip_package/build_pip_package tensorflow_pkg
cd tensorflow_pkg/
sudo pip3 install tensorflow-<name_of_generated_file>.whl

通過切換到另一個目錄并運行python來檢查您的構建是否正常工作:

import tensorflow as tf
hello = tf.constant('Hello World!')
sess = tf.Session()
print(sess.run(hello))

您將得到Hello World!輸出。TensorFlow有以下型號:

https://github.com/tensorflow/models

您可以運行:

git clone https://github.com/tensorflow/models.git
cd models/tutorials/image/imagenet
python classify_image.py

這是一些基本設置和測試。

以上是“怎么在Ubuntu 18.04服務器上安裝TensorFlow”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

孟州市| 兴化市| 北京市| 台北市| 宁乡县| 咸阳市| 小金县| 宜良县| 泰安市| 黄冈市| 云梦县| 尚义县| 保定市| 惠水县| 沈丘县| 大同县| 横山县| 石台县| 清涧县| 襄汾县| 鄄城县| 邯郸市| 清丰县| 天柱县| 江都市| 衡南县| 柯坪县| 萨迦县| 沧州市| 土默特左旗| 登封市| 万年县| 沽源县| 汉沽区| 南华县| 武功县| 莲花县| 海安县| 昌江| 永顺县| 常熟市|