亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Centos7安裝ElasticSearch實例分析

發布時間:2022-04-19 16:30:41 來源:億速云 閱讀:175 作者:iii 欄目:移動開發

今天小編給大家分享一下Centos7安裝ElasticSearch實例分析的相關知識點,內容詳細,邏輯清晰,相信大部分人都還太了解這方面的知識,所以分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后有所收獲,下面我們一起來了解一下吧。

1.下載elasticsearch 6.4.1安裝包 

2.解壓壓縮包

[root@localhost elasticsearch]# tar -zxvf elasticsearch-6.4.1.tar.gz

3.啟動elasticsearch

[root@localhost bin]# ./elasticsearch

以后臺方式啟動

[root@localhost bin]# ./elasticsearch -d

tips:

[root@localhost bin]# ./elasticsearch
[2018-09-19t19:46:09,817][warn ][o.e.b.elasticsearchuncaughtexceptionhandler] [] uncaught exception in thread [main]
org.elasticsearch.bootstrap.startupexception: java.lang.runtimeexception: can not run elasticsearch as root
  at org.elasticsearch.bootstrap.elasticsearch.init(elasticsearch.java:140) ~[elasticsearch-6.4.1.jar:6.4.1]
  at org.elasticsearch.bootstrap.elasticsearch.execute(elasticsearch.java:127) ~[elasticsearch-6.4.1.jar:6.4.1]
  at org.elasticsearch.cli.environmentawarecommand.execute(environmentawarecommand.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]
  at org.elasticsearch.cli.command.mainwithouterrorhandling(command.java:124) ~[elasticsearch-cli-6.4.1.jar:6.4.1]
  at org.elasticsearch.cli.command.main(command.java:90) ~[elasticsearch-cli-6.4.1.jar:6.4.1]
  at org.elasticsearch.bootstrap.elasticsearch.main(elasticsearch.java:93) ~[elasticsearch-6.4.1.jar:6.4.1]
  at org.elasticsearch.bootstrap.elasticsearch.main(elasticsearch.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]
caused by: java.lang.runtimeexception: can not run elasticsearch as root
  at org.elasticsearch.bootstrap.bootstrap.initializenatives(bootstrap.java:104) ~[elasticsearch-6.4.1.jar:6.4.1]
  at org.elasticsearch.bootstrap.bootstrap.setup(bootstrap.java:171) ~[elasticsearch-6.4.1.jar:6.4.1]
  at org.elasticsearch.bootstrap.bootstrap.init(bootstrap.java:326) ~[elasticsearch-6.4.1.jar:6.4.1]
  at org.elasticsearch.bootstrap.elasticsearch.init(elasticsearch.java:136) ~[elasticsearch-6.4.1.jar:6.4.1]

elasticsearch 不能以root用戶角色啟動,因此需要將安裝目錄授權給其他用戶,用其他用戶來啟動

Centos7安裝ElasticSearch實例分析

啟動成功后,驗證,打開新的終端,執行如下命令:

[root@localhost ~]# curl 'http://localhost:9200/?pretty'
{
 "name" : "o5bavye",
 "cluster_name" : "elasticsearch",
 "cluster_uuid" : "rw1yjlzksgodxkuvgixmxg",
 "version" : {
  "number" : "6.4.1",
  "build_flavor" : "default",
  "build_type" : "tar",
  "build_hash" : "e36acdb",
  "build_date" : "2018-09-13t22:18:07.696808z",
  "build_snapshot" : false,
  "lucene_version" : "7.4.0",
  "minimum_wire_compatibility_version" : "5.6.0",
  "minimum_index_compatibility_version" : "5.0.0"
 },
 "tagline" : "you know, for search"
}
[root@localhost ~]#

返回信息則表示安裝成功!

4.安裝kibana

sense 是一個 kibana 應用 它提供交互式的控制臺,通過你的瀏覽器直接向 elasticsearch 提交請求。 這本書的在線版本包含有一個 view in sense 的鏈接,里面有許多代碼示例。當點擊的時候,它會打開一個代碼示例的sense控制臺。 你不必安裝 sense,但是它允許你在本地的 elasticsearch 集群上測試示例代碼,從而使本書更具有交互性。

下載kibana

kibana是一個為 elasticsearch 提供的數據分析的 web 接口。可使用它對日志進行高效的搜索、可視化、分析等各種操作

下載完成解壓kibana

[root@localhost elasticsearch]# tar -zxvf kibana-6.4.1-linux-x86_64.tar.gz

修改  配置config目錄下的kibana.yml 文件,配置elasticsearch地址和kibana地址信息

server.host: "192.168.92.50" # kibana 服務器地址
elasticsearch.url: "http://192.168.92.50:9200"  # es 地址

啟動 kibana

[root@localhost bin]# ./kibana

安裝kibana本機訪問:http://localhost:5601/

Centos7安裝ElasticSearch實例分析

選擇dev tools菜單,即可實現可視化請求

Centos7安裝ElasticSearch實例分析

5.安裝logstash

下載logstash

下載完成解壓后,config目錄下配置日志收集日志配置文件 logstash.conf

# sample logstash configuration for creating a simple
# beats -> logstash -> elasticsearch pipeline.

input {
 tcp {
  mode => "server"
  host => "192.168.92.50"
  port => 4560
  codec => json_lines
 }
}
output {
 elasticsearch {
  hosts => "192.168.92.50:9200"
  index => "springboot-logstash-%{+yyyy.mm.dd}"
 }
}

配置成功后啟動logstatsh

[root@localhost bin]# ./logstash -f ../config/logstash.conf

es  一些基礎知識:

索引(名詞):

如前所述,一個 索引 類似于傳統關系數據庫中的一個 數據庫 ,是一個存儲關系型文檔的地方。 索引 (index) 的復數詞為 indices 或 indexes 。

索引(動詞):

索引一個文檔 就是存儲一個文檔到一個 索引 (名詞)中以便它可以被檢索和查詢到。這非常類似于 sql 語句中的 insert 關鍵詞,除了文檔已存在時新文檔會替換舊文檔情況之外。

倒排索引:

關系型數據庫通過增加一個 索引 比如一個 b樹(b-tree)索引 到指定的列上,以便提升數據檢索速度。elasticsearch 和 lucene 使用了一個叫做 倒排索引 的結構來達到相同的目的。

put /megacorp/employee/1
{
  "first_name" : "john",
  "last_name" : "smith",
  "age" :    25,
  "about" :   "i love to go rock climbing",
  "interests": [ "sports", "music" ]
}

返回結果:

#! deprecation: the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, you must manage this on the create index request or with an index template
{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "1",
 "_version": 1,
 "result": "created",
 "_shards": {
  "total": 2,
  "successful": 1,
  "failed": 0
 },
 "_seq_no": 0,
 "_primary_term": 1
}

路徑 /megacorp/employee/1 包含了三部分的信息:

megacorp 索引名稱

employee  類型名稱

1        特定雇員的id

放置第二個雇員信息:

{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "2",
 "_version": 1,
 "result": "created",
 "_shards": {
  "total": 2,
  "successful": 1,
  "failed": 0
 },
 "_seq_no": 0,
 "_primary_term": 1
}

返回結果:

{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "2",
 "_version": 1,
 "result": "created",
 "_shards": {
  "total": 2,
  "successful": 1,
  "failed": 0
 },
 "_seq_no": 0,
 "_primary_term": 1
}

放置第三個雇員信息

{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "3",
 "_version": 1,
 "result": "created",
 "_shards": {
  "total": 2,
  "successful": 1,
  "failed": 0
 },
 "_seq_no": 0,
 "_primary_term": 1
}

5.檢索文檔

檢索到單個雇員的數據

get /megacorp/employee/1

返回結果:

{
 "_index": "megacorp",
 "_type": "employee",
 "_id": "1",
 "_version": 1,
 "found": true,
 "_source": {
  "first_name": "john",
  "last_name": "smith",
  "age": 25,
  "about": "i love to go rock climbing",
  "interests": [
   "sports",
   "music"
  ]
 }
}

6.輕量搜索

一個 get 是相當簡單的,可以直接得到指定的文檔。 現在嘗試點兒稍微高級的功能,比如一個簡單的搜索!

第一個嘗試的幾乎是最簡單的搜索了。我們使用下列請求來搜索所有雇員:

get /megacorp/employee/_search

返回結果:

{
 "took": 31,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "skipped": 0,
  "failed": 0
 },
 "hits": {
  "total": 3,
  "max_score": 1,
  "hits": [
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "2",
    "_score": 1,
    "_source": {
     "first_name": "jane",
     "last_name": "smith",
     "age": 32,
     "about": "i like to collect rock albums",
     "interests": [
      "music"
     ]
    }
   },
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_score": 1,
    "_source": {
     "first_name": "john",
     "last_name": "smith",
     "age": 25,
     "about": "i love to go rock climbing",
     "interests": [
      "sports",
      "music"
     ]
    }
   },
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "3",
    "_score": 1,
    "_source": {
     "first_name": "douglas",
     "last_name": "fir",
     "age": 35,
     "about": "i like to build cabinets",
     "interests": [
      "forestry"
     ]
    }
   }
  ]
 }
}

通過姓名模糊匹配來獲得結果

get /megacorp/employee/_search?q=last_name:smith

返回結果:

{
 "took": 414,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "skipped": 0,
  "failed": 0
 },
 "hits": {
  "total": 2,
  "max_score": 0.2876821,
  "hits": [
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "2",
    "_score": 0.2876821,
    "_source": {
     "first_name": "jane",
     "last_name": "smith",
     "age": 32,
     "about": "i like to collect rock albums",
     "interests": [
      "music"
     ]
    }
   },
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
     "first_name": "john",
     "last_name": "smith",
     "age": 25,
     "about": "i love to go rock climbing",
     "interests": [
      "sports",
      "music"
     ]
    }
   }
  ]
 }
}

7.使用查詢表達式搜索

領域特定語言 (dsl), 指定了使用一個 json 請求

get /megacorp/employee/_search
{
  "query" : {
    "match" : {
      "last_name" : "smith"
    }
  }
}

返回結果:

{
 "took": 7,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "skipped": 0,
  "failed": 0
 },
 "hits": {
  "total": 2,
  "max_score": 0.2876821,
  "hits": [
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "2",
    "_score": 0.2876821,
    "_source": {
     "first_name": "jane",
     "last_name": "smith",
     "age": 32,
     "about": "i like to collect rock albums",
     "interests": [
      "music"
     ]
    }
   },
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_score": 0.2876821,
    "_source": {
     "first_name": "john",
     "last_name": "smith",
     "age": 25,
     "about": "i love to go rock climbing",
     "interests": [
      "sports",
      "music"
     ]
    }
   }
  ]
 }
}

8.更復雜的搜索

搜索姓氏為 smith 的雇員,但這次我們只需要年齡大于 30 的,使用過濾器 filter ,它支持高效地執行一個結構化查詢

get /megacorp/employee/_search
{
  "query" : {
    "bool": {
      "must": {
        "match" : {
          "last_name" : "smith" 
        }
      },
      "filter": {
        "range" : {
          "age" : { "gt" : 30 } 
        }
      }
    }
  }
}

其中:range 過濾器 , 它能找到年齡大于 30 的文檔,其中 gt 表示_大于(_great than)

返回結果:

{
 "took": 44,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "skipped": 0,
  "failed": 0
 },
 "hits": {
  "total": 1,
  "max_score": 0.2876821,
  "hits": [
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "2",
    "_score": 0.2876821,
    "_source": {
     "first_name": "jane",
     "last_name": "smith",
     "age": 32,
     "about": "i like to collect rock albums",
     "interests": [
      "music"
     ]
    }
   }
  ]
 }
}

9.全文搜索

搜索下所有喜歡攀巖(rock climbing)的雇員

get /megacorp/employee/_search
{
  "query" : {
    "match" : {
      "about" : "rock climbing"
    }
  }
}

返回結果:

{
 "took": 17,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "skipped": 0,
  "failed": 0
 },
 "hits": {
  "total": 2,
  "max_score": 0.5753642,
  "hits": [
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_score": 0.5753642,
    "_source": {
     "first_name": "john",
     "last_name": "smith",
     "age": 25,
     "about": "i love to go rock climbing",
     "interests": [
      "sports",
      "music"
     ]
    }
   },
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "2",
    "_score": 0.2876821,
    "_source": {
     "first_name": "jane",
     "last_name": "smith",
     "age": 32,
     "about": "i like to collect rock albums",
     "interests": [
      "music"
     ]
    }
   }
  ]
 }
}

Centos7安裝ElasticSearch實例分析

10.全文搜索

找出一個屬性中的獨立單詞是沒有問題的,但有時候想要精確匹配一系列單詞或者短語 。 比如, 我們想執行這樣一個查詢,僅匹配同時包含 “rock” 和 “climbing” ,并且 二者以短語 “rock climbing” 的形式緊挨著的雇員記錄。

get /megacorp/employee/_search
{
  "query" : {
    "match_phrase" : {
      "about" : "rock climbing"
    }
  }
}

返回結果:

{
 "took": 142,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "skipped": 0,
  "failed": 0
 },
 "hits": {
  "total": 1,
  "max_score": 0.5753642,
  "hits": [
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_score": 0.5753642,
    "_source": {
     "first_name": "john",
     "last_name": "smith",
     "age": 25,
     "about": "i love to go rock climbing",
     "interests": [
      "sports",
      "music"
     ]
    }
   }
  ]
 }
}

11.高亮搜索

許多應用都傾向于在每個搜索結果中 高亮 部分文本片段,以便讓用戶知道為何該文檔符合查詢條件。在 elasticsearch 中檢索出高亮片段也很容易。

增加參數: highlight

get /megacorp/employee/_search
{
  "query" : {
    "match_phrase" : {
      "about" : "rock climbing"
    }
  },
  "highlight": {
    "fields" : {
      "about" : {}
    }
  }
}

返回結果:

{
 "took": 250,
 "timed_out": false,
 "_shards": {
  "total": 5,
  "successful": 5,
  "skipped": 0,
  "failed": 0
 },
 "hits": {
  "total": 1,
  "max_score": 0.5753642,
  "hits": [
   {
    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_score": 0.5753642,
    "_source": {
     "first_name": "john",
     "last_name": "smith",
     "age": 25,
     "about": "i love to go rock climbing",
     "interests": [
      "sports",
      "music"
     ]
    },
    "highlight": {
     "about": [
      "i love to go <em>rock</em> <em>climbing</em>"
     ]
    }
   }
  ]
 }
}

其中高亮模塊為highlight屬性

12.分析

elasticsearch 有一個功能叫聚合(aggregations),允許我們基于數據生成一些精細的分析結果。聚合與 sql 中的 group by 類似但更強大。

舉個例子,挖掘出雇員中最受歡迎的興趣愛好:

get /megacorp/employee/_search
{
 "aggs": {
  "all_interests": {
   "terms": { "field": "interests" }
  }
 }
}

返回結果:

{
  ...
  "hits": { ... },
  "aggregations": {
   "all_interests": {
     "buckets": [
      {
        "key":    "music",
        "doc_count": 2
      },
      {
        "key":    "forestry",
        "doc_count": 1
      },
      {
        "key":    "sports",
        "doc_count": 1
      }
     ]
   }
  }
}

以上就是“Centos7安裝ElasticSearch實例分析”這篇文章的所有內容,感謝各位的閱讀!相信大家閱讀完這篇文章都有很大的收獲,小編每天都會為大家更新不同的知識,如果還想學習更多的知識,請關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

海安县| 宁阳县| 龙胜| 清远市| 安阳市| 邓州市| 雅安市| 桂东县| 二连浩特市| 东乡族自治县| 五指山市| 安阳市| 曲麻莱县| 西畴县| 汾西县| 遂溪县| 策勒县| 平遥县| 聊城市| 普定县| 永靖县| 隆德县| 皋兰县| 吉林市| 宣城市| 黄浦区| 普兰店市| 苏尼特右旗| 尤溪县| 新乡市| 黑龙江省| 宝应县| 正镶白旗| 右玉县| 库车县| 湟源县| 宁都县| 通道| 水富县| 昔阳县| 松溪县|