亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Java中Term Vector的概念和使用方法是什么

發布時間:2021-12-21 10:43:56 來源:億速云 閱讀:211 作者:iii 欄目:開發技術

本篇內容主要講解“Java中Term Vector的概念和使用方法是什么”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Java中Term Vector的概念和使用方法是什么”吧!

term vector是什么?

每次有document數據插入時,elasticsearch除了對document進行正排、倒排索引的存儲之外,如果此索引的field設置了term_vector參數,elasticsearch還會對這個的分詞信息進行計算、統計,比如這個document有多少個field,每個field的值分詞處理后得到的term的df值,ttf值是多少,每個term存儲的位置偏移量等信息,這些統計信息統稱為term vector。term vector的值有5個

  • no:不存儲term vector信息,默認值

  • yes:只存儲field terms信息,不包含position和offset信息

  • with_positions:存儲term信息和position信息

  • with_offsets:存儲term信息和offset信息

  • with_positions_offsets:存儲完整的term vector信息,包括field terms、position、offset信息。

term vector的信息生成有兩種方式:index-time和query-time。index-time即建立索引時生成term vector信息,query-time是在查詢過程中實時生成term vector信息,前者以空間換時間,后者以時間換空間。

Java中Term Vector的概念和使用方法是什么

term vector有什么作用?

term vector本質上是一個數據探查的工具(可以看成是一個debugger工具),上面記錄著一個document內的field分詞后的term的詳細情況,如拆分成幾個term,每個term在正排索引的哪個位置,各自的df值、ttf值分別是多少等等。一般用于數據疑似問題的排查,比如說排序和搜索與預期的結果不一致,需要了解根本原因,可以拿這個工具手動進行數據分析,幫助判斷問題的根源。

讀懂term vector信息

我們來看看一個完整的term vector報文,都有哪些信息,帶#號的一行代碼是添加的注釋,如下示例:

{
 "_index": "music",
 "_type": "children",
 "_id": "1",
 "_version": 1,
 "found": true,
 "took": 0,
 "term_vectors": {
   "text": {
     "field_statistics": {
       "sum_doc_freq": 3,
       "doc_count": 1,
       "sum_ttf": 3
     },
     "terms": {
       "elasticsearch": {
         "doc_freq": 1,
         "ttf": 1,
         "term_freq": 1,
         "tokens": [
           {
             "position": 2,
             "start_offset": 11,
             "end_offset": 24
           }
         ]
       },
       "hello": {
         "doc_freq": 1,
         "ttf": 1,
         "term_freq": 1,
         "tokens": [
           {
             "position": 0,
             "start_offset": 0,
             "end_offset": 5
           }
         ]
       },
       "java": {
         "doc_freq": 1,
         "ttf": 1,
         "term_freq": 1,
         "tokens": [
           {
             "position": 1,
             "start_offset": 6,
             "end_offset": 10
           }
         ]
       }
     }
   }
 }
}

一段完整的term vector信息,term vector是按field為維度來統計的,主要包含三個部分:

  • field statistics

  • term statistics

  • term information

field statistics

指該索引和type下所有的document,對這個field所有term的統計信息,注意document的范圍,不是某一條,是指定index/type下的所有document。

  • sum_doc_freq(sum of document frequency):這個field中所有的term的df之和。

  • doc_count(document count):有多少document包含這個field,有些document可能沒有這個field。

  • sum_ttf(sum of total term frequency):這個field中所有的term的tf之和。

term statistics

hello為當前document中,text field字段分詞后的term,查詢時設置term_statistics=true時生效。

  • doc_freq(document frequency):有多少document包含這個term。

  • ttf(total term frequency):這個term在所有document中出現的頻率。

  • term_freq(term frequency in the field):這個term在當前document中出現的頻率。

term information

示例中tokens里面的內容,tokens里面是個數組

  • position:這個term在field里的正排索引位置,如果有多個相同的term,tokens下面會有多條記錄。

  • start_offset:這個term在field里的偏移,表示起始位置偏移量。

  • end_offset:這個term在field里的偏移量,表示結束位置偏移量。

term vector使用案例

  1. 建立索引music,type命名為children,指定text字段為index-time,fullname字段為query-time

PUT /music
{
 "mappings": {
   "children": {
     "properties": {
       "content": {
           "type": "text",
           "term_vector": "with_positions_offsets",
           "store" : true,
           "analyzer" : "standard"
        },
        "fullname": {
           "type": "text",
           "analyzer" : "standard"
       }
     }
   }
 }
}
  1. 添加3條示例數據

PUT /music/children/1
{
 "fullname" : "Jean Ritchie",
 "content" : "Love Somebody"
}

PUT /music/children/2
{
 "fullname" : "John Smith",
 "content" : "wake me, shark me ..."
}
PUT /music/children/3
{
 "fullname" : "Peter Raffi",
 "content" : "brush your teeth"
}
  1. 對document id為1這條數據進行term vector探查

GET /music/children/1/_termvectors
{
 "fields" : ["content"],
 "offsets" : true,
 "positions" : true,
 "term_statistics" : true,
 "field_statistics" : true
}

得到的結果即為上文的term vector示例。另外可以提一下,用這3個document的id進行查詢,field_statistics部分是一樣的。

term vector常見用法

除了上一節的標準查詢用法,還有一些參數可以豐富term vector的查詢。

  • doc參數

GET /music/children/_termvectors
{
 "doc" : {
   "fullname" : "Peter Raffi",
   "content" : "brush your teeth"
 },
 "fields" : ["content"],
 "offsets" : true,
 "positions" : true,
 "term_statistics" : true,
 "field_statistics" : true
}

這個語法的含義是針對指定的doc進行term vector分析,doc里的內容可以隨意指定,特別實用。

  • per_field_analyzer參數
    可以指定字段的分詞器進行探查

GET /music/children/_termvectors
{
 "doc" : {
   "fullname" : "Jimmie Davis",
   "content" : "you are my sunshine"
 },
 "fields" : ["content"],
 "offsets" : true,
 "positions" : true,
 "term_statistics" : true,
 "field_statistics" : true,
 "per_field_analyzer" : {
   "text": "standard"
 }
}
  • filter參數
    對term vector統計結果進行過濾

GET /music/children/_termvectors
{
 "doc" : {
   "fullname" : "Jimmie Davis",
   "content" : "you are my sunshine"
 },
 "fields" : ["content"],
 "offsets" : true,
 "positions" : true,
 "term_statistics" : true,
 "field_statistics" : true,
 "filter" : {
     "max_num_terms" : 3,
     "min_term_freq" : 1,
     "min_doc_freq" : 1
   }
}

根據term統計信息,過濾出你想要看到的term vector統計結果。也挺有用的,比如你探查數據可以過濾掉一些出現頻率過低的term。

  • docs參數
    允許你同時對多個doc進行探查,這個使用頻率看個人習慣。

GET _mtermvectors
{
  "docs": [
     {
        "_index": "music",
        "_type": "children",
        "_id": "2",
        "term_statistics": true
     },
     {
        "_index": "music",
        "_type": "children",
        "_id": "1",
        "fields": [
           "content"
        ]
     }
  ]
}

term vector使用建議

有兩種方式可以得到term vector信息,一種是像上面案例,建立時指定,另一種是直接查詢時生成

  • index-time,在mapping里配置,建立索引的時候,就直接給你生成這些term和field的統計信息,如果term_vector設置為with_positions_offsets,索引所占的空間是不設置term vector時的2倍。

  • query-time,你之前沒有生成過任何的Term vector信息,然后在查看term vector的時候,直接就可以看到了,會on the fly,現場計算出各種統計信息,然后返回給你。

這兩種方式采用哪種取決于對term vector的使用期望,query-time更常用一些,畢竟這個工具的用處是協助定位問題,實時計算就行。

到此,相信大家對“Java中Term Vector的概念和使用方法是什么”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

泸溪县| 青川县| 泸水县| 怀宁县| 开阳县| 南阳市| 利辛县| 固阳县| 武定县| 东兴市| 凌源市| 二手房| 博白县| 保定市| 曲靖市| 含山县| 金沙县| 宁武县| 开平市| 肃宁县| 浦东新区| 镇坪县| 邯郸市| 莒南县| 措美县| 读书| 黄浦区| 衡阳县| 潼关县| 达尔| 宿州市| 颍上县| 潞城市| 辽阳县| 乌海市| 井陉县| 尉犁县| 思茅市| 武平县| 花莲市| 洛宁县|