您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關spark與kafaka整合workcount示例分析,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
package hgs.spark.streaming import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.streaming.StreamingContext import org.apache.spark.streaming.Seconds import org.apache.spark.streaming.kafka.KafkaUtils import org.apache.spark.storage.StorageLevel import kafka.serializer.StringDecoder import org.apache.kafka.common.serialization.StringDeserializer import kafka.serializer.DefaultDecoder import org.apache.spark.HashPartitioner /* * pom.xml添加 * <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-8_2.11</artifactId> <version>2.1.1</version> </dependency> * */ object SparkStreamingKafkaReciverWordCount { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc,Seconds(4)) ssc.checkpoint("d:\\checkpoint") val updateFunc=(iter:Iterator[(String,Seq[Int],Option[Int])])=>{ //iter.flatMap(it=>Some(it._2.sum+it._3.getOrElse(0)).map((it._1,_)))//方式一 //iter.flatMap{case(x,y,z)=>{Some(y.sum+z.getOrElse(0)).map((x,_))}}//方式二 iter.flatMap(it=>Some(it._1,(it._2.sum.toInt+it._3.getOrElse(0))))//方式三 } //注意下面的map一定要加上泛型,否則createStream會報錯 //kafaka的一些參數 val props = Map[String,String]( "bootstrap.servers"->"bigdata01:9092,bigdata02:9092,bigdata03:9092", "group.id"->"group_test", "enable.auto.commit"->"true", "auto.commit.intervals.ms"->"2000", "auto.offset.reset"->"smallest", "zookeeper.connect"->"bigdata01:2181,bigdata02:2181,bigdata03:2181") //topics val topics = Map[String,Int]("test"->1) val rds = KafkaUtils.createStream[String,String,StringDecoder,StringDecoder](ssc, props, topics, StorageLevel.MEMORY_AND_DISK) val words = rds.flatMap(x=>x._2.split(" ")) val wordscount = words.map((_,1)).updateStateByKey(updateFunc, new HashPartitioner(sc.defaultMinPartitions), true) wordscount.print() //啟動 ssc.start() ssc.awaitTermination() } }
看完上述內容,你們對spark與kafaka整合workcount示例分析有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。