您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關如何進行Spring源碼剖析AOP實現原理,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
前言
前面寫了六篇文章詳細地分析了Spring Bean加載流程,這部分完了之后就要進入一個比較困難的部分了,就是AOP的實現原理分析。為了探究AOP實現原理,首先定義幾個類,一個Dao接口:
public interface Dao {
public void select();
public void insert();
}
Dao接口的實現類DaoImpl:
public class DaoImpl implements Dao { @Override public void select() { System.out.println("Enter DaoImpl.select()"); } @Override public void insert() { System.out.println("Enter DaoImpl.insert()"); } }
定義一個TimeHandler,用于方法調用前后打印時間,在AOP中,這扮演的是橫切關注點的角色:
public class TimeHandler { public void printTime() { System.out.println("CurrentTime:" + System.currentTimeMillis()); } }
定義一個XML文件aop.xml:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd"> <bean id="daoImpl" class="org.xrq.action.aop.DaoImpl" /> <bean id="timeHandler" class="org.xrq.action.aop.TimeHandler" /> </beans>
寫一段測試代碼TestAop.java:
public class TestAop { @Test public void testAop() { ApplicationContext ac = new ClassPathXmlApplicationContext("spring/aop.xml"); Dao dao = (Dao)ac.getBean("daoImpl"); dao.select(); } }
代碼運行結果就不看了,有了以上的內容,我們就可以根據這些跟一下代碼,看看Spring到底是如何實現AOP的。
有很多朋友不愿意去看AOP源碼的一個很大原因是因為找不到AOP源碼實現的入口在哪里,這個確實是。不過我們可以看一下上面的測試代碼,就普通Bean也好、AOP也好,最終都是通過getBean方法獲取到Bean并調用方法的,getBean之后的對象已經前后都打印了TimeHandler類printTime()方法里面的內容,可以想見它們已經是被Spring容器處理過了。
既然如此,那無非就兩個地方處理:
加載Bean定義的時候應該有過特殊的處理
getBean的時候應該有過特殊的處理
因此,本文圍繞【1.加載Bean定義的時候應該有過特殊的處理】展開,先找一下到底是哪里Spring對AOP做了特殊的處理。代碼直接定位到DefaultBeanDefinitionDocumentReader的parseBeanDefinitions方法:
protected void parseBeanDefinitions(Element root, BeanDefinitionParserDelegate delegate) { if (delegate.isDefaultNamespace(root)) { NodeList nl = root.getChildNodes(); for (int i = 0; i < nl.getLength(); i++) { Node node = nl.item(i); if (node instanceof Element) { Element ele = (Element) node; if (delegate.isDefaultNamespace(ele)) { parseDefaultElement(ele, delegate); } else { delegate.parseCustomElement(ele); } } } } else { delegate.parseCustomElement(root); } }
正常來說,遇到
public BeanDefinition parseCustomElement(Element ele, BeanDefinition containingBd) { String namespaceUri = getNamespaceURI(ele); NamespaceHandler handler = this.readerContext.getNamespaceHandlerResolver().resolve(namespaceUri); if (handler == null) { error("Unable to locate Spring NamespaceHandler for XML schema namespace [" + namespaceUri + "]", ele); return null; } return handler.parse(ele, new ParserContext(this.readerContext, this, containingBd)); }
因為之前把整個XML解析為了org.w3c.dom.Document,org.w3c.dom.Document以樹的形式表示整個XML,具體到每一個節點就是一個Node。
首先第2行從這個Node(參數Element是Node接口的子接口)中拿到Namespace=” http://www.springframework.org/schema/aop“,第3行的代碼根據這個Namespace獲取對應的NamespaceHandler即Namespace處理器,具體到aop這個Namespace的NamespaceHandler是org.springframework.aop.config.AopNamespaceHandler類,也就是第3行代碼獲取到的結果。具體到AopNamespaceHandler里面,有幾個Parser,是用于具體標簽轉換的,分別為:
config–>ConfigBeanDefinitionParser
aspectj-autoproxy–>AspectJAutoProxyBeanDefinitionParser
scoped-proxy–>ScopedProxyBeanDefinitionDecorator
spring-configured–>SpringConfiguredBeanDefinitionParser
接著,就是第8行的代碼,利用AopNamespaceHandler的parse方法,解析下的內容了。
AOP Bean定義加載——根據織入方式將、轉換成名為adviceDef的RootBeanDefinition
上面經過分析,已經找到了Spring是通過AopNamespaceHandler處理的AOP,那么接著進入AopNamespaceHandler的parse方法源代碼:
public BeanDefinition parse(Element element, ParserContext parserContext) { return findParserForElement(element, parserContext).parse(element, parserContext); }
首先獲取具體的Parser,因為當前節點是,上一部分最后有列,config是通過ConfigBeanDefinitionParser來處理的,因此findParserForElement(element, parserContext)這一部分代碼獲取到的是ConfigBeanDefinitionParser,接著看ConfigBeanDefinitionParser的parse方法:
public BeanDefinition parse(Element element, ParserContext parserContext) { CompositeComponentDefinition compositeDef = new CompositeComponentDefinition(element.getTagName(), parserContext.extractSource(element)); parserContext.pushContainingComponent(compositeDef); configureAutoProxyCreator(parserContext, element); List<Element> childElts = DomUtils.getChildElements(element); for (Element elt: childElts) { String localName = parserContext.getDelegate().getLocalName(elt); if (POINTCUT.equals(localName)) { parsePointcut(elt, parserContext); } else if (ADVISOR.equals(localName)) { parseAdvisor(elt, parserContext); } else if (ASPECT.equals(localName)) { parseAspect(elt, parserContext); } } parserContext.popAndRegisterContainingComponent(); return null; }
重點先提一下第6行的代碼,該行代碼的具體實現不跟了但它非常重要,configureAutoProxyCreator方法的作用我用幾句話說一下:
向Spring容器注冊了一個BeanName為org.springframework.aop.config.internalAutoProxyCreator的Bean定義,可以自定義也可以使用Spring提供的(根據優先級來)
Spring默認提供的是org.springframework.aop.aspectj.autoproxy.AspectJAwareAdvisorAutoProxyCreator,這個類是AOP的核心類,留在下篇講解
在這個方法里面也會根據配置proxy-target-class和expose-proxy,設置是否使用CGLIB進行代理以及是否暴露最終的代理。
下的節點為,想見必然是執行第18行的代碼parseAspect,跟進去:
private void parseAspect(Element aspectElement, ParserContext parserContext) { String aspectId = aspectElement.getAttribute(ID); String aspectName = aspectElement.getAttribute(REF); try { this.parseState.push(new AspectEntry(aspectId, aspectName)); List<BeanDefinition> beanDefinitions = new ArrayList<BeanDefinition>(); List<BeanReference> beanReferences = new ArrayList<BeanReference>(); List<Element> declareParents = DomUtils.getChildElementsByTagName(aspectElement, DECLARE_PARENTS); for (int i = METHOD_INDEX; i < declareParents.size(); i++) { Element declareParentsElement = declareParents.get(i); beanDefinitions.add(parseDeclareParents(declareParentsElement, parserContext)); } // We have to parse "advice" and all the advice kinds in one loop, to get the // ordering semantics right. NodeList nodeList = aspectElement.getChildNodes(); boolean adviceFoundAlready = false; for (int i = 0; i < nodeList.getLength(); i++) { Node node = nodeList.item(i); if (isAdviceNode(node, parserContext)) { if (!adviceFoundAlready) { adviceFoundAlready = true; if (!StringUtils.hasText(aspectName)) { parserContext.getReaderContext().error( " tag needs aspect bean reference via 'ref' attribute when declaring advices.", aspectElement, this.parseState.snapshot()); return; } beanReferences.add(new RuntimeBeanReference(aspectName)); } AbstractBeanDefinition advisorDefinition = parseAdvice( aspectName, i, aspectElement, (Element) node, parserContext, beanDefinitions, beanReferences); beanDefinitions.add(advisorDefinition); } } AspectComponentDefinition aspectComponentDefinition = createAspectComponentDefinition( aspectElement, aspectId, beanDefinitions, beanReferences, parserContext); parserContext.pushContainingComponent(aspectComponentDefinition); List<Element> pointcuts = DomUtils.getChildElementsByTagName(aspectElement, POINTCUT); for (Element pointcutElement : pointcuts) { parsePointcut(pointcutElement, parserContext); } parserContext.popAndRegisterContainingComponent(); } finally { this.parseState.pop(); } }
從第20行~第37行的循環開始關注這個方法。這個for循環有一個關鍵的判斷就是第22行的ifAdviceNode判斷,看下ifAdviceNode方法做了什么:
private boolean isAdviceNode(Node aNode, ParserContext parserContext) { if (!(aNode instanceof Element)) { return false; } else { String name = parserContext.getDelegate().getLocalName(aNode); return (BEFORE.equals(name) || AFTER.equals(name) || AFTER_RETURNING_ELEMENT.equals(name) || AFTER_THROWING_ELEMENT.equals(name) || AROUND.equals(name)); } }
即這個for循環只用來處理標簽下的、、、、這五個標簽的。
接著,如果是上述五種標簽之一,那么進入第33行~第34行的parseAdvice方法:
private AbstractBeanDefinition parseAdvice( String aspectName, int order, Element aspectElement, Element adviceElement, ParserContext parserContext, List<BeanDefinition> beanDefinitions, List<BeanReference> beanReferences) { try { this.parseState.push(new AdviceEntry(parserContext.getDelegate().getLocalName(adviceElement))); // create the method factory bean RootBeanDefinition methodDefinition = new RootBeanDefinition(MethodLocatingFactoryBean.class); methodDefinition.getPropertyValues().add("targetBeanName", aspectName); methodDefinition.getPropertyValues().add("methodName", adviceElement.getAttribute("method")); methodDefinition.setSynthetic(true); // create instance factory definition RootBeanDefinition aspectFactoryDef = new RootBeanDefinition(SimpleBeanFactoryAwareAspectInstanceFactory.class); aspectFactoryDef.getPropertyValues().add("aspectBeanName", aspectName); aspectFactoryDef.setSynthetic(true); // register the pointcut AbstractBeanDefinition adviceDef = createAdviceDefinition( adviceElement, parserContext, aspectName, order, methodDefinition, aspectFactoryDef, beanDefinitions, beanReferences); // configure the advisor RootBeanDefinition advisorDefinition = new RootBeanDefinition(AspectJPointcutAdvisor.class); advisorDefinition.setSource(parserContext.extractSource(adviceElement)); advisorDefinition.getConstructorArgumentValues().addGenericArgumentValue(adviceDef); if (aspectElement.hasAttribute(ORDER_PROPERTY)) { advisorDefinition.getPropertyValues().add( ORDER_PROPERTY, aspectElement.getAttribute(ORDER_PROPERTY)); } // register the final advisor parserContext.getReaderContext().registerWithGeneratedName(advisorDefinition); return advisorDefinition; } finally { this.parseState.pop(); } }
方法主要做了三件事:
根據織入方式(before、after這些)創建RootBeanDefinition,名為adviceDef即advice定義
將上一步創建的RootBeanDefinition寫入一個新的RootBeanDefinition,構造一個新的對象,名為advisorDefinition,即advisor定義
將advisorDefinition注冊到DefaultListableBeanFactory中
下面來看做的第一件事createAdviceDefinition方法定義:
private AbstractBeanDefinition createAdviceDefinition( Element adviceElement, ParserContext parserContext, String aspectName, int order, RootBeanDefinition methodDef, RootBeanDefinition aspectFactoryDef, List<BeanDefinition> beanDefinitions, List<BeanReference> beanReferences) { RootBeanDefinition adviceDefinition = new RootBeanDefinition(getAdviceClass(adviceElement, parserContext)); adviceDefinition.setSource(parserContext.extractSource(adviceElement)); adviceDefinition.getPropertyValues().add(ASPECT_NAME_PROPERTY, aspectName); adviceDefinition.getPropertyValues().add(DECLARATION_ORDER_PROPERTY, order); if (adviceElement.hasAttribute(RETURNING)) { adviceDefinition.getPropertyValues().add( RETURNING_PROPERTY, adviceElement.getAttribute(RETURNING)); } if (adviceElement.hasAttribute(THROWING)) { adviceDefinition.getPropertyValues().add( THROWING_PROPERTY, adviceElement.getAttribute(THROWING)); } if (adviceElement.hasAttribute(ARG_NAMES)) { adviceDefinition.getPropertyValues().add( ARG_NAMES_PROPERTY, adviceElement.getAttribute(ARG_NAMES)); } ConstructorArgumentValues cav = adviceDefinition.getConstructorArgumentValues(); cav.addIndexedArgumentValue(METHOD_INDEX, methodDef); Object pointcut = parsePointcutProperty(adviceElement, parserContext); if (pointcut instanceof BeanDefinition) { cav.addIndexedArgumentValue(POINTCUT_INDEX, pointcut); beanDefinitions.add((BeanDefinition) pointcut); } else if (pointcut instanceof String) { RuntimeBeanReference pointcutRef = new RuntimeBeanReference((String) pointcut); cav.addIndexedArgumentValue(POINTCUT_INDEX, pointcutRef); beanReferences.add(pointcutRef); } cav.addIndexedArgumentValue(ASPECT_INSTANCE_FACTORY_INDEX, aspectFactoryDef); return adviceDefinition; }
首先可以看到,創建的AbstractBeanDefinition實例是RootBeanDefinition,這和普通Bean創建的實例為GenericBeanDefinition不同。然后進入第6行的getAdviceClass方法看一下:
private Class getAdviceClass(Element adviceElement, ParserContext parserContext) { String elementName = parserContext.getDelegate().getLocalName(adviceElement); if (BEFORE.equals(elementName)) { return AspectJMethodBeforeAdvice.class; } else if (AFTER.equals(elementName)) { return AspectJAfterAdvice.class; } else if (AFTER_RETURNING_ELEMENT.equals(elementName)) { return AspectJAfterReturningAdvice.class; } else if (AFTER_THROWING_ELEMENT.equals(elementName)) { return AspectJAfterThrowingAdvice.class; } else if (AROUND.equals(elementName)) { return AspectJAroundAdvice.class; } else { throw new IllegalArgumentException("Unknown advice kind [" + elementName + "]."); } }
既然創建Bean定義,必然該Bean定義中要對應一個具體的Class,不同的切入方式對應不同的Class:
before對應AspectJMethodBeforeAdvice
After對應AspectJAfterAdvice
after-returning對應AspectJAfterReturningAdvice
after-throwing對應AspectJAfterThrowingAdvice
around對應AspectJAroundAdvice
createAdviceDefinition方法剩余邏輯沒什么,就是判斷一下標簽里面的屬性并設置一下相應的值而已,至此、兩個標簽對應的AbstractBeanDefinition就創建出來了。
AOP Bean定義加載——將名為adviceDef的RootBeanDefinition轉換成名為advisorDefinition的RootBeanDefinition
下面我們看一下第二步的操作,將名為adviceDef的RootBeanD轉換成名為advisorDefinition的RootBeanDefinition,跟一下上面一部分ConfigBeanDefinitionParser類parseAdvice方法的第26行~32行的代碼:
RootBeanDefinition advisorDefinition = new RootBeanDefinition(AspectJPointcutAdvisor.class); advisorDefinition.setSource(parserContext.extractSource(adviceElement)); advisorDefinition.getConstructorArgumentValues().addGenericArgumentValue(adviceDef); if (aspectElement.hasAttribute(ORDER_PROPERTY)) { advisorDefinition.getPropertyValues().add( ORDER_PROPERTY, aspectElement.getAttribute(ORDER_PROPERTY)); }
這里相當于將上一步生成的RootBeanDefinition包裝了一下,new一個新的RootBeanDefinition出來,Class類型是org.springframework.aop.aspectj.AspectJPointcutAdvisor。
第4行~第7行的代碼是用于判斷標簽中有沒有”order”屬性的,有就設置一下,”order”屬性是用來控制切入方法優先級的。
AOP Bean定義加載——將BeanDefinition注冊到DefaultListableBeanFactory中
最后一步就是將BeanDefinition注冊到DefaultListableBeanFactory中了,代碼就是前面ConfigBeanDefinitionParser的parseAdvice方法的最后一部分了:
// register the final advisor parserContext.getReaderContext().registerWithGeneratedName(advisorDefinition); ... 跟一下registerWithGeneratedName方法的實現:
public String registerWithGeneratedName(BeanDefinition beanDefinition) {
String generatedName = generateBeanName(beanDefinition);
getRegistry().registerBeanDefinition(generatedName, beanDefinition);
return generatedName;
}
第2行獲取注冊的名字BeanName,和<bean>的注冊差不多,使用的是Class全路徑+”#”+全局計數器的方式,其中的Class全路徑為org.springframework.aop.aspectj.AspectJPointcutAdvisor,依次類推,每一個BeanName應當為org.springframework.aop.aspectj.AspectJPointcutAdvisor#0、org.springframework.aop.aspectj.AspectJPointcutAdvisor#1、org.springframework.aop.aspectj.AspectJPointcutAdvisor#2這樣下去。 第3行向DefaultListableBeanFactory中注冊,BeanName已經有了,剩下的就是Bean定義,Bean定義的解析流程之前已經看過了,就不說了。
AOP Bean定義加載——AopNamespaceHandler處理流程
回到ConfigBeanDefinitionParser的parseAspect方法:
private void parseAspect(Element aspectElement, ParserContext parserContext) { ... AspectComponentDefinition aspectComponentDefinition = createAspectComponentDefinition( aspectElement, aspectId, beanDefinitions, beanReferences, parserContext); parserContext.pushContainingComponent(aspectComponentDefinition); List<Element> pointcuts = DomUtils.getChildElementsByTagName(aspectElement, POINTCUT); for (Element pointcutElement : pointcuts) { parsePointcut(pointcutElement, parserContext); } parserContext.popAndRegisterContainingComponent(); } finally { this.parseState.pop(); } }
省略號部分表示是解析的是、這種標簽,上部分已經說過了,就不說了,下面看一下解析部分的源碼。
第5行~第7行的代碼構建了一個Aspect標簽組件定義,并將Apsect標簽組件定義推到ParseContext即解析工具上下文中,這部分代碼不是關鍵。
第9行的代碼拿到所有下的pointcut標簽,進行遍歷,由parsePointcut方法進行處理:
private AbstractBeanDefinition parsePointcut(Element pointcutElement, ParserContext parserContext) { String id = pointcutElement.getAttribute(ID); String expression = pointcutElement.getAttribute(EXPRESSION); AbstractBeanDefinition pointcutDefinition = null; try { this.parseState.push(new PointcutEntry(id)); pointcutDefinition = createPointcutDefinition(expression); pointcutDefinition.setSource(parserContext.extractSource(pointcutElement)); String pointcutBeanName = id; if (StringUtils.hasText(pointcutBeanName)) { parserContext.getRegistry().registerBeanDefinition(pointcutBeanName, pointcutDefinition); } else { pointcutBeanName = parserContext.getReaderContext().registerWithGeneratedName(pointcutDefinition); } parserContext.registerComponent( new PointcutComponentDefinition(pointcutBeanName, pointcutDefinition, expression)); } finally { this.parseState.pop(); } return pointcutDefinition; }
第2行~第3行的代碼獲取標簽下的”id”屬性與”expression”屬性。
第8行的代碼推送一個PointcutEntry,表示當前Spring上下文正在解析Pointcut標簽。
第9行的代碼創建Pointcut的Bean定義,之后再看,先把其他方法都看一下。
第10行的代碼不管它,最終從NullSourceExtractor的extractSource方法獲取Source,就是個null。
第12行~第18行的代碼用于注冊獲取到的Bean定義,默認pointcutBeanName為標簽中定義的id屬性:
如果標簽中配置了id屬性就執行的是第13行~第15行的代碼,pointcutBeanName=id
如果標簽中沒有配置id屬性就執行的是第16行~第18行的代碼,和Bean不配置id屬性一樣的規則,pointcutBeanName=org.springframework.aop.aspectj.AspectJExpressionPointcut#序號(從0開始累加)
第20行~第21行的代碼向解析工具上下文中注冊一個Pointcut組件定義
第23行~第25行的代碼,finally塊在標簽解析完畢后,讓之前推送至棧頂的PointcutEntry出棧,表示此次標簽解析完畢。
最后回頭來一下第9行代碼createPointcutDefinition的實現,比較簡單:
protected AbstractBeanDefinition createPointcutDefinition(String expression) { RootBeanDefinition beanDefinition = new RootBeanDefinition(AspectJExpressionPointcut.class); beanDefinition.setScope(BeanDefinition.SCOPE_PROTOTYPE); beanDefinition.setSynthetic(true); beanDefinition.getPropertyValues().add(EXPRESSION, expression); return beanDefinition; }
關鍵就是注意一下兩點:
標簽對應解析出來的BeanDefinition是RootBeanDefinition,且RootBenaDefinitoin中的Class是org.springframework.aop.aspectj.AspectJExpressionPointcut
標簽對應的Bean是prototype即原型的
這樣一個流程下來,就解析了標簽中的內容并將之轉換為RootBeanDefintion存儲在Spring容器中。
上篇文章說了,org.springframework.aop.aspectj.autoproxy.AspectJAwareAdvisorAutoProxyCreator這個類是Spring提供給開發者的AOP的核心類,就是AspectJAwareAdvisorAutoProxyCreator完成了【類/接口–>代理】的轉換過程,首先我們看一下AspectJAwareAdvisorAutoProxyCreator的層次結構:
這里最值得注意的一點是最左下角的那個方框,我用幾句話總結一下:
AspectJAwareAdvisorAutoProxyCreator是BeanPostProcessor接口的實現類
postProcessBeforeInitialization方法與postProcessAfterInitialization方法實現在父類AbstractAutoProxyCreator中
postProcessBeforeInitialization方法是一個空實現
邏輯代碼在postProcessAfterInitialization方法中
基于以上的分析,將Bean生成代理的時機已經一目了然了:在每個Bean初始化之后,如果需要,調用AspectJAwareAdvisorAutoProxyCreator中的postProcessBeforeInitialization為Bean生成代理。
代理對象實例化—-判斷是否為
上文分析了Bean生成代理的時機是在每個Bean初始化之后,下面把代碼定位到Bean初始化之后,先是AbstractAutowireCapableBeanFactory的initializeBean方法進行初始化:
protected Object initializeBean(final String beanName, final Object bean, RootBeanDefinition mbd) { if (System.getSecurityManager() != null) { AccessController.doPrivileged(new PrivilegedAction<Object>() { public Object run() { invokeAwareMethods(beanName, bean); return null; } }, getAccessControlContext()); } else { invokeAwareMethods(beanName, bean); } Object wrappedBean = bean; if (mbd == null || !mbd.isSynthetic()) { wrappedBean = applyBeanPostProcessorsBeforeInitialization(wrappedBean, beanName); } try { invokeInitMethods(beanName, wrappedBean, mbd); } catch (Throwable ex) { throw new BeanCreationException( (mbd != null ? mbd.getResourceDescription() : null), beanName, "Invocation of init method failed", ex); } if (mbd == null || !mbd.isSynthetic()) { wrappedBean = applyBeanPostProcessorsAfterInitialization(wrappedBean, beanName); } return wrappedBean; }
初始化之前是第16行的applyBeanPostProcessorsBeforeInitialization方法,初始化之后即29行的applyBeanPostProcessorsAfterInitialization方法:
public Object applyBeanPostProcessorsAfterInitialization(Object existingBean, String beanName) throws BeansException { Object result = existingBean; for (BeanPostProcessor beanProcessor : getBeanPostProcessors()) { result = beanProcessor.postProcessAfterInitialization(result, beanName); if (result == null) { return result; } } return result; }
這里調用每個BeanPostProcessor的postProcessBeforeInitialization方法。按照之前的分析,看一下AbstractAutoProxyCreator的postProcessAfterInitialization方法實現:
public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException { if (bean != null) { Object cacheKey = getCacheKey(bean.getClass(), beanName); if (!this.earlyProxyReferences.contains(cacheKey)) { return wrapIfNecessary(bean, beanName, cacheKey); } } return bean; }
跟一下第5行的方法wrapIfNecessary:
protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) { if (this.targetSourcedBeans.contains(beanName)) { return bean; } if (this.nonAdvisedBeans.contains(cacheKey)) { return bean; } if (isInfrastructureClass(bean.getClass()) || shouldSkip(bean.getClass(), beanName)) { this.nonAdvisedBeans.add(cacheKey); return bean; } // Create proxy if we have advice. Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, null); if (specificInterceptors != DO_NOT_PROXY) { this.advisedBeans.add(cacheKey); Object proxy = createProxy(bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean)); this.proxyTypes.put(cacheKey, proxy.getClass()); return proxy; } this.nonAdvisedBeans.add(cacheKey); return bean; }
第2行~第11行是一些不需要生成代理的場景判斷,這里略過。首先我們要思考的第一個問題是:哪些目標對象需要生成代理?因為配置文件里面有很多Bean,肯定不能對每個Bean都生成代理,因此需要一套規則判斷Bean是不是需要生成代理,這套規則就是第14行的代碼getAdvicesAndAdvisorsForBean:
protected List<Advisor> findEligibleAdvisors(Class beanClass, String beanName) { List<Advisor> candidateAdvisors = findCandidateAdvisors(); List<Advisor> eligibleAdvisors = findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName); extendAdvisors(eligibleAdvisors); if (!eligibleAdvisors.isEmpty()) { eligibleAdvisors = sortAdvisors(eligibleAdvisors); } return eligibleAdvisors; }
顧名思義,方法的意思是為指定class尋找合適的Advisor。
第2行代碼,尋找候選Advisors,根據上文的配置文件,有兩個候選Advisor,分別是節點下的和這兩個,這兩個在XML解析的時候已經被轉換生成了RootBeanDefinition。
跳過第3行的代碼,先看下第4行的代碼extendAdvisors方法,之后再重點看一下第3行的代碼。第4行的代碼extendAdvisors方法作用是向候選Advisor鏈的開頭(也就是List.get(0)的位置)添加一個org.springframework.aop.support.DefaultPointcutAdvisor。
第3行代碼,根據候選Advisors,尋找可以使用的Advisor,跟一下方法實現:
public static List<Advisor> findAdvisorsThatCanApply(List<Advisor> candidateAdvisors, Class<?> clazz) { if (candidateAdvisors.isEmpty()) { return candidateAdvisors; } List<Advisor> eligibleAdvisors = new LinkedList<Advisor>(); for (Advisor candidate : candidateAdvisors) { if (candidate instanceof IntroductionAdvisor && canApply(candidate, clazz)) { eligibleAdvisors.add(candidate); } } boolean hasIntroductions = !eligibleAdvisors.isEmpty(); for (Advisor candidate : candidateAdvisors) { if (candidate instanceof IntroductionAdvisor) { // already processed continue; } if (canApply(candidate, clazz, hasIntroductions)) { eligibleAdvisors.add(candidate); } } return eligibleAdvisors; }
整個方法的主要判斷都圍繞canApply展開方法:
public static boolean canApply(Advisor advisor, Class<?> targetClass, boolean hasIntroductions) { if (advisor instanceof IntroductionAdvisor) { return ((IntroductionAdvisor) advisor).getClassFilter().matches(targetClass); } else if (advisor instanceof PointcutAdvisor) { PointcutAdvisor pca = (PointcutAdvisor) advisor; return canApply(pca.getPointcut(), targetClass, hasIntroductions); } else { // It doesn't have a pointcut so we assume it applies. return true; } }
第一個參數advisor的實際類型是AspectJPointcutAdvisor,它是PointcutAdvisor的子類,因此執行第7行的方法:
public static boolean canApply(Pointcut pc, Class<?> targetClass, boolean hasIntroductions) { if (!pc.getClassFilter().matches(targetClass)) { return false; } MethodMatcher methodMatcher = pc.getMethodMatcher(); IntroductionAwareMethodMatcher introductionAwareMethodMatcher = null; if (methodMatcher instanceof IntroductionAwareMethodMatcher) { introductionAwareMethodMatcher = (IntroductionAwareMethodMatcher) methodMatcher; } Set<Class> classes = new HashSet<Class>(ClassUtils.getAllInterfacesForClassAsSet(targetClass)); classes.add(targetClass); for (Class<?> clazz : classes) { Method[] methods = clazz.getMethods(); for (Method method : methods) { if ((introductionAwareMethodMatcher != null && introductionAwareMethodMatcher.matches(method, targetClass, hasIntroductions)) || methodMatcher.matches(method, targetClass)) { return true; } } } return false; }
這個方法其實就是拿當前Advisor對應的expression做了兩層判斷:
目標類必須滿足expression的匹配規則
目標類中的方法必須滿足expression的匹配規則,當然這里方法不是全部需要滿足expression的匹配規則,有一個方法滿足即可
如果以上兩條都滿足,那么容器則會判斷該
代理對象實例化—-為
上文分析了為
protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) { if (this.targetSourcedBeans.contains(beanName)) { return bean; } if (this.nonAdvisedBeans.contains(cacheKey)) { return bean; } if (isInfrastructureClass(bean.getClass()) || shouldSkip(bean.getClass(), beanName)) { this.nonAdvisedBeans.add(cacheKey); return bean; } // Create proxy if we have advice. Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, null); if (specificInterceptors != DO_NOT_PROXY) { this.advisedBeans.add(cacheKey); Object proxy = createProxy(bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean)); this.proxyTypes.put(cacheKey, proxy.getClass()); return proxy; } this.nonAdvisedBeans.add(cacheKey); return bean; }
第14行拿到
protected Object createProxy( Class<?> beanClass, String beanName, Object[] specificInterceptors, TargetSource targetSource) { ProxyFactory proxyFactory = new ProxyFactory(); // Copy our properties (proxyTargetClass etc) inherited from ProxyConfig. proxyFactory.copyFrom(this); if (!shouldProxyTargetClass(beanClass, beanName)) { // Must allow for introductions; can't just set interfaces to // the target's interfaces only. Class<?>[] targetInterfaces = ClassUtils.getAllInterfacesForClass(beanClass, this.proxyClassLoader); for (Class<?> targetInterface : targetInterfaces) { proxyFactory.addInterface(targetInterface); } } Advisor[] advisors = buildAdvisors(beanName, specificInterceptors); for (Advisor advisor : advisors) { proxyFactory.addAdvisor(advisor); } proxyFactory.setTargetSource(targetSource); customizeProxyFactory(proxyFactory); proxyFactory.setFrozen(this.freezeProxy); if (advisorsPreFiltered()) { proxyFactory.setPreFiltered(true); } return proxyFactory.getProxy(this.proxyClassLoader); }
第4行~第6行new出了一個ProxyFactory,Proxy,顧名思義,代理工廠的意思,提供了簡單的方式使用代碼獲取和配置AOP代理。
第8行的代碼做了一個判斷,判斷的內容是這個節點中proxy-target-class=”false”或者proxy-target-class不配置,即不使用CGLIB生成代理。如果滿足條件,進判斷,獲取當前Bean實現的所有接口,講這些接口Class對象都添加到ProxyFactory中。
第17行~第28行的代碼沒什么看的必要,向ProxyFactory中添加一些參數而已。重點看第30行proxyFactory.getProxy(this.proxyClassLoader)這句:
public Object getProxy(ClassLoader classLoader) { return createAopProxy().getProxy(classLoader); }
實現代碼就一行,但是卻明確告訴我們做了兩件事情:
創建AopProxy接口實現類
通過AopProxy接口的實現類的getProxy方法獲取
就從這兩個點出發,分兩部分分析一下。
代理對象實例化—-創建AopProxy接口實現類
看一下createAopProxy()方法的實現,它位于DefaultAopProxyFactory類中:
protected final synchronized AopProxy createAopProxy() { if (!this.active) { activate(); } return getAopProxyFactory().createAopProxy(this); }
前面的部分沒什么必要看,直接進入重點即createAopProxy方法:
public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException { if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) { Class targetClass = config.getTargetClass(); if (targetClass == null) { throw new AopConfigException("TargetSource cannot determine target class: " + "Either an interface or a target is required for proxy creation."); } if (targetClass.isInterface()) { return new JdkDynamicAopProxy(config); } if (!cglibAvailable) { throw new AopConfigException( "Cannot proxy target class because CGLIB2 is not available. " + "Add CGLIB to the class path or specify proxy interfaces."); } return CglibProxyFactory.createCglibProxy(config); } else { return new JdkDynamicAopProxy(config); } }
對類生成代理使用CGLIB
對接口生成代理使用JDK原生的Proxy
可以通過配置文件指定對接口使用CGLIB生成代理
這三句話的出處就是createAopProxy方法。看到默認是第19行的代碼使用JDK自帶的Proxy生成代理,碰到以下三種情況例外:
ProxyConfig的isOptimize方法為true,這表示讓Spring自己去優化而不是用戶指定
ProxyConfig的isProxyTargetClass方法為true,這表示配置了proxy-target-class=”true”
ProxyConfig滿足hasNoUserSuppliedProxyInterfaces方法執行結果為true,這表示
在進入第2行的if判斷之后再根據目標
proxy-target-class沒有配置或者proxy-target-class=”false”,返回JdkDynamicAopProxy
proxy-target-class=”true”或者
當然,不管是JdkDynamicAopProxy還是Cglib2AopProxy,AdvisedSupport都是作為構造函數參數傳入的,里面存儲了具體的Advisor。
代理對象實例化—-通過getProxy方法獲取
其實代碼已經分析到了JdkDynamicAopProxy和Cglib2AopProxy,剩下的就沒什么好講的了,無非就是看對這兩種方式生成代理的熟悉程度而已。
Cglib2AopProxy生成代理的代碼就不看了,對Cglib不熟悉的朋友可以看Cglib及其基本使用一文。
JdkDynamicAopProxy生成代理的方式稍微看一下:
public Object getProxy(ClassLoader classLoader) { if (logger.isDebugEnabled()) { logger.debug("Creating JDK dynamic proxy: target source is " + this.advised.getTargetSource()); } Class[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised); findDefinedEqualsAndHashCodeMethods(proxiedInterfaces); return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this); }
這邊解釋一下第5行和第6行的代碼,第5行代碼的作用是拿到所有要代理的接口,第6行代碼的作用是嘗試尋找這些接口方法里面有沒有equals方法和hashCode方法,同時都有的話打個標記,尋找結束,equals方法和hashCode方法有特殊處理。
最終通過第7行的Proxy.newProxyInstance方法獲取接口/類對應的代理對象,Proxy是JDK原生支持的生成代理的方式。
前面已經詳細分析了為接口/類生成代理的原理,生成代理之后就要調用方法了,這里看一下使用JdkDynamicAopProxy調用方法的原理。
由于JdkDynamicAopProxy本身實現了InvocationHandler接口,因此具體代理前后處理的邏輯在invoke方法中:
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { MethodInvocation invocation; Object oldProxy = null; boolean setProxyContext = false; TargetSource targetSource = this.advised.targetSource; Class targetClass = null; Object target = null; try { if (!this.equalsDefined && AopUtils.isEqualsMethod(method)) { // The target does not implement the equals(Object) method itself. return equals(args[0]); } if (!this.hashCodeDefined && AopUtils.isHashCodeMethod(method)) { // The target does not implement the hashCode() method itself. return hashCode(); } if (!this.advised.opaque && method.getDeclaringClass().isInterface() && method.getDeclaringClass().isAssignableFrom(Advised.class)) { // Service invocations on ProxyConfig with the proxy config... return AopUtils.invokeJoinpointUsingReflection(this.advised, method, args); } Object retVal; if (this.advised.exposeProxy) { // Make invocation available if necessary. oldProxy = AopContext.setCurrentProxy(proxy); setProxyContext = true; } // May be null. Get as late as possible to minimize the time we "own" the target, // in case it comes from a pool. target = targetSource.getTarget(); if (target != null) { targetClass = target.getClass(); } // Get the interception chain for this method. List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass); // Check whether we have any advice. If we don't, we can fallback on direct // reflective invocation of the target, and avoid creating a MethodInvocation. if (chain.isEmpty()) { // We can skip creating a MethodInvocation: just invoke the target directly // Note that the final invoker must be an InvokerInterceptor so we know it does // nothing but a reflective operation on the target, and no hot swapping or fancy proxying. retVal = AopUtils.invokeJoinpointUsingReflection(target, method, args); } else { // We need to create a method invocation... invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain); // Proceed to the joinpoint through the interceptor chain. retVal = invocation.proceed(); } // Massage return value if necessary. if (retVal != null && retVal == target && method.getReturnType().isInstance(proxy) && !RawTargetAccess.class.isAssignableFrom(method.getDeclaringClass())) { // Special case: it returned "this" and the return type of the method // is type-compatible. Note that we can't help if the target sets // a reference to itself in another returned object. retVal = proxy; } return retVal; } finally { if (target != null && !targetSource.isStatic()) { // Must have come from TargetSource. targetSource.releaseTarget(target); } if (setProxyContext) { // Restore old proxy. AopContext.setCurrentProxy(oldProxy); } } }
第11行~第18行的代碼,表示equals方法與hashCode方法即使滿足expression規則,也不會為之產生代理內容,調用的是JdkDynamicAopProxy的equals方法與hashCode方法。至于這兩個方法是什么作用,可以自己查看一下源代碼。
第19行~第23行的代碼,表示方法所屬的Class是一個接口并且方法所屬的Class是AdvisedSupport的父類或者父接口,直接通過反射調用該方法。
第27行~第30行的代碼,是用于判斷是否將代理暴露出去的,由標簽中的expose-proxy=”true/false”配置。
第41行的代碼,獲取AdvisedSupport中的所有攔截器和動態攔截器列表,用于攔截方法,具體到我們的實際代碼,列表中有三個Object,分別是:
chain.get(0):ExposeInvocationInterceptor,這是一個默認的攔截器,對應的原Advisor為DefaultPointcutAdvisor
chain.get(1):MethodBeforeAdviceInterceptor,用于在實際方法調用之前的攔截,對應的原Advisor為AspectJMethodBeforeAdvice
chain.get(2):AspectJAfterAdvice,用于在實際方法調用之后的處理
第45行~第50行的代碼,如果攔截器列表為空,很正常,因為某個類/接口下的某個方法可能不滿足expression的匹配規則,因此此時通過反射直接調用該方法。
第51行~第56行的代碼,如果攔截器列表不為空,按照注釋的意思,需要一個ReflectiveMethodInvocation,并通過proceed方法對原方法進行攔截,proceed方法感興趣的朋友可以去看一下,里面使用到了遞歸的思想對chain中的Object進行了層層的調用。
下面我們來看一下CGLIB代理的方式,這里需要讀者去了解一下CGLIB以及其創建代理的方式:
這里將攔截器鏈封裝到了DynamicAdvisedInterceptor中,并加入了Callback,DynamicAdvisedInterceptor實現了CGLIB的MethodInterceptor,所以其核心邏輯在intercept方法中:
這里我們看到了與JDK動態代理同樣的獲取攔截器鏈的過程,并且CglibMethodInvokcation繼承了我們在JDK動態代理看到的ReflectiveMethodInvocation,但是并沒有重寫其proceed方法,只是重寫了執行目標方法的邏輯,所以整體上是大同小異的。
看完上述內容,你們對如何進行Spring源碼剖析AOP實現原理有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。