您好,登錄后才能下訂單哦!
本篇內容介紹了“Hadoop機架怎么配置”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!
1.背景
Hadoop在設計時考慮到數據的安全與高效,數據文件默認在HDFS上存放三份,存儲策略為本地一份,同機架內其它某一節點上一份,不同機架的某一節點上一份。這樣如果本地數據損壞,節點可以從同一機架內的相鄰節點拿到數據,速度肯定比從跨機架節點上拿數據要快;同時,如果整個機架的網絡出現異常,也能保證在其它機架的節點上找到數據。為了降低整體的帶寬消耗和讀取延時,HDFS會盡量讓讀取程序讀取離它最近的副本。如果在讀取程序的同一個機架上有一個副本,那么就讀取該副本。如果一個HDFS集群跨越多個數據中心,那么客戶端也將首先讀本地數據中心的副本。那么Hadoop是如何確定任意兩個節點是位于同一機架,還是跨機架的呢?答案就是機架感知。
默認情況下,hadoop的機架感知是沒有被啟用的。所以,在通常情況下,hadoop集群的HDFS在選機器的時候,是隨機選擇的,也就是說,很有可能在寫數據時,hadoop將第一塊數據block1寫到了rack1上,然后隨機的選擇下將block2寫入到了rack2下,此時兩個rack之間產生了數據傳輸的流量,再接下來,在隨機的情況下,又將block3重新又寫回了rack1,此時,兩個rack之間又產生了一次數據流量。在job處理的數據量非常的大,或者往hadoop推送的數據量非常大的時候,這種情況會造成rack之間的網絡流量成倍的上升,成為性能的瓶頸,進而影響作業的性能以至于整個集群的服務
2.配置
默認情況下,namenode啟動時候日志是這樣的:
2013-09-22 17:27:26,423 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /default-rack/ 192.168.147.92:50010
每個IP 對應的機架ID都是 /default-rack ,說明hadoop的機架感知沒有被啟用。
要將hadoop機架感知的功能啟用,配置非常簡單,在 NameNode所在節點的/home/bigdata/apps/hadoop/etc/hadoop的core-site.xml配置文件中配置一個選項:
<property>
<name>topology.script.file.name</name>
<value>/home/bigdata/apps/hadoop/etc/hadoop/topology.sh</value>
</property>
這個配置選項的value指定為一個可執行程序,通常為一個腳本,該腳本接受一個參數,輸出一個值。接受的參數通常為某臺datanode機器的ip地址,而輸出的值通常為該ip地址對應的datanode所在的rack,例如”/rack1”。Namenode啟動時,會判斷該配置選項是否為空,如果非空,則表示已經啟用機架感知的配置,此時namenode會根據配置尋找該腳本,并在接收到每一個datanode的heartbeat時,將該datanode的ip地址作為參數傳給該腳本運行,并將得到的輸出作為該datanode所屬的機架ID,保存到內存的一個map中.
至于腳本的編寫,就需要將真實的網絡拓樸和機架信息了解清楚后,通過該腳本能夠將機器的ip地址和機器名正確的映射到相應的機架上去。一個簡單的實現如下:
#!/bin/bash
HADOOP_CONF=/home/bigdata/apps/hadoop/etc/hadoop
while [ $# -gt 0 ] ; do
nodeArg=$1
exec<${HADOOP_CONF}/topology.data
result=""
while read line ; do
ar=( $line )
if [ "${ar[0]}" = "$nodeArg" ]||[ "${ar[1]}" = "$nodeArg" ]; then
result="${ar[2]}"
fi
done
shift
if [ -z "$result" ] ; then
echo -n "/default-rack"
else
echo -n "$result"
fi
done
topology.data,格式為:節點(ip或主機名) /交換機xx/機架xx
192.168.147.91 tbe192168147091 /dc1/rack1
192.168.147.92 tbe192168147092 /dc1/rack1
192.168.147.93 tbe192168147093 /dc1/rack2
192.168.147.94 tbe192168147094 /dc1/rack3
192.168.147.95 tbe192168147095 /dc1/rack3
192.168.147.96 tbe192168147096 /dc1/rack3
需要注意的是,在Namenode上,該文件中的節點必須使用IP,使用主機名無效,而Jobtracker上,該文件中的節點必須使用主機名,使用IP無效,所以,最好ip和主機名都配上。
這樣配置后,namenode啟動時候日志是這樣的:
2013-09-23 17:16:27,272 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /dc1/rack3/ 192.168.147.94:50010
說明hadoop的機架感知已經被啟用了。
查看HADOOP機架信息命令:
./hadoop dfsadmin -printTopology
Rack: /dc1/rack1
192.168.147.91:50010 (tbe192168147091)
192.168.147.92:50010 (tbe192168147092)
Rack: /dc1/rack2
192.168.147.93:50010 (tbe192168147093)
Rack: /dc1/rack3
192.168.147.94:50010 (tbe192168147094)
192.168.147.95:50010 (tbe192168147095)
192.168.147.96:50010 (tbe192168147096)
3.增加數據節點,不重啟NameNode
假設Hadoop集群在192.168.147.68上部署了NameNode和DataNode,啟用了機架感知,執行bin/hadoop dfsadmin -printTopology看到的結果:
Rack: /dc1/rack1
192.168.147.68:50010 (dbj68)
現在想增加一個物理位置在rack2的數據節點192.168.147.69到集群中,不重啟NameNode。
首先,修改NameNode節點的topology.data的配置,加入:192.168.147.69 dbj69 /dc1/rack2,保存。
192.168.147.68 dbj68 /dc1/rack1
192.168.147.69 dbj69 /dc1/rack2
然后,sbin/hadoop-daemons.sh start datanode啟動數據節點dbj69,任意節點執行bin/hadoop dfsadmin -printTopology 看到的結果:
Rack: /dc1/rack1
192.168.147.68:50010 (dbj68)
Rack: /dc1/rack2
192.168.147.69:50010 (dbj69)
說明hadoop已經感知到了新加入的節點dbj69。
注意:如果不將dbj69的配置加入到topology.data中,執行sbin/hadoop-daemons.sh start datanode啟動數據節點dbj69,datanode日志中會有異常發生,導致dbj69啟動不成功。
2013-11-21 10:51:33,502 FATAL org.apache.hadoop.hdfs.server.datanode.DataNode: Initialization failed for block pool Block pool BP-1732631201-192.168.147.68-1385000665316 (storage id DS-878525145-192.168.147.69-50010-1385002292231) service to dbj68/192.168.147.68:9000
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.net.NetworkTopology$InvalidTopologyException): Invalid network topology. You cannot have a rack and a non-rack node at the same level of the network topology.
at org.apache.hadoop.net.NetworkTopology.add(NetworkTopology.java:382)
at org.apache.hadoop.hdfs.server.blockmanagement.DatanodeManager.registerDatanode(DatanodeManager.java:746)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.registerDatanode(FSNamesystem.java:3498)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.registerDatanode(NameNodeRpcServer.java:876)
at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolServerSideTranslatorPB.registerDatanode(DatanodeProtocolServerSideTranslatorPB.java:91)
at org.apache.hadoop.hdfs.protocol.proto.DatanodeProtocolProtos$DatanodeProtocolService$2.callBlockingMethod(DatanodeProtocolProtos.java:20018)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:453)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1002)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1701)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1697)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1695)
at org.apache.hadoop.ipc.Client.call(Client.java:1231)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:202)
at $Proxy10.registerDatanode(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:601)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:164)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:83)
at $Proxy10.registerDatanode(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolClientSideTranslatorPB.registerDatanode(DatanodeProtocolClientSideTranslatorPB.java:149)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.register(BPServiceActor.java:619)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.connectToNNAndHandshake(BPServiceActor.java:221)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.run(BPServiceActor.java:660)
at java.lang.Thread.run(Thread.java:722)
4.節點間距離計算
有了機架感知,NameNode就可以畫出下圖所示的datanode網絡拓撲圖。D1,R1都是交換機,最底層是datanode。則H1的rackid=/D1/R1/H1,H1的parent是R1,R1的是D1。這些rackid信息可以通過topology.script.file.name配置。有了這些rackid信息就可以計算出任意兩臺datanode之間的距離,得到最優的存放策略,優化整個集群的網絡帶寬均衡以及數據最優分配。
distance(/D1/R1/H1,/D1/R1/H1)=0 相同的datanode
distance(/D1/R1/H1,/D1/R1/H2)=2 同一rack下的不同datanode
distance(/D1/R1/H1,/D1/R2/H4)=4 同一IDC下的不同datanode
distance(/D1/R1/H1,/D2/R3/H7)=6 不同IDC下的datanode
“Hadoop機架怎么配置”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。