亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

citus 系列7 - topn 加速(count(*) group by order by count(*) de

發布時間:2020-08-07 03:48:38 來源:ITPUB博客 閱讀:303 作者:digoal 欄目:關系型數據庫

背景

count(*) group by order by count(*) desc limit x   用來統計 topn。

topn是運營的重要指標,比如排行前10的活躍用戶。

如果數據量非常龐大,統計會比較耗時,citus提供了一個topn插件,與HLL類似,核心是使用少量空間存儲聚合過程中的數據,同時返回一個固定大小(參數設置topn.number_of_counters)的JSONB,可用于下次聚合。(注意,PostgreSQL 11支持更強大的hashagg parallel后,聚合大數據量已不是問題)

topn插件聚合過程如圖。

citus 系列7 - topn 加速(count(*) group by order by count(*) de

對topn的結果使用topn_union_agg可以再次聚合。

postgres=# \df topn*  
                              List of functions  
 Schema |       Name       | Result data type  | Argument data types |  Type    
--------+------------------+-------------------+---------------------+--------  
 public | topn             | SETOF topn_record | jsonb, integer      | normal  
 public | topn_add         | jsonb             | jsonb, text         | normal  
 public | topn_add_agg     | jsonb             | text                | agg  
 public | topn_add_trans   | internal          | internal, text      | normal  
 public | topn_pack        | jsonb             | internal            | normal  
 public | topn_union       | jsonb             | jsonb, jsonb        | normal  
 public | topn_union_agg   | jsonb             | jsonb               | agg  
 public | topn_union_trans | internal          | internal, jsonb     | normal  
(8 rows)
-- starting from nothing, record that we saw an "a"  
select topn_add('{}', 'a');  
-- => {"a": 1}  
  
-- record the sighting of another "a"  
select topn_add(topn_add('{}', 'a'), 'a');  
-- => {"a": 2}  
  
-- for normal_rand  
create extension tablefunc;  
  
-- count values from a normal distribution  
SELECT topn_add_agg(floor(abs(i))::text)  
  FROM normal_rand(1000, 5, 0.7) i;  
-- => {"2": 1, "3": 74, "4": 420, "5": 425, "6": 77, "7": 3}

從topn jsonb中直接獲取topn的值

postgres=# select  (topn(topn_union_agg(agg_prodid),5)).* from reviews_by_prodid;  
  item  | frequency   
--------+-----------  
 509594 |        66  
 497599 |        59  
 505217 |        58  
 461257 |        58  
 403111 |        57  
(5 rows)

使用topn

1、所有節點(包括coordinator, worker)安裝topn軟件

cd ~   
. /var/lib/pgsql/.bash_profile  
git clone https://github.com/citusdata/postgresql-topn  
cd postgresql-topn  
USE_PGXS=1 make  
USE_PGXS=1 make install

2、安裝插件(coordinator)

postgres=# create extension topn;  
CREATE EXTENSION

3、安裝插件(worker),在coordinator中調用run_command_on_workers,在所有worker中執行。

postgres=# select run_command_on_workers('create extension topn;');  
           run_command_on_workers             
--------------------------------------------  
 (xxx.xxx.xxx.224,1921,t,"CREATE EXTENSION")  
 (xxx.xxx.xxx.225,1921,t,"CREATE EXTENSION")  
 (xxx.xxx.xxx.226,1921,t,"CREATE EXTENSION")  
 (xxx.xxx.xxx.227,1921,t,"CREATE EXTENSION")  
 (xxx.xxx.xxx.229,1921,t,"CREATE EXTENSION")  
 (xxx.xxx.xxx.230,1921,t,"CREATE EXTENSION")  
 (xxx.xxx.xxx.231,1921,t,"CREATE EXTENSION")  
 (xxx.xxx.xxx.232,1921,t,"CREATE EXTENSION")  
(8 rows)

測試

1、測試表

create table tbl(id serial8,gid int, prodid int, c1 int, c2 int);  
  
postgres=# \d tbl  
                            Table "public.tbl"  
 Column |  Type   | Collation | Nullable |             Default               
--------+---------+-----------+----------+---------------------------------  
 id     | bigint  |           | not null | nextval('tbl_id_seq'::regclass)  
 gid    | integer |           |          |   
 prodid | integer |           |          |   
 c1     | integer |           |          |   
 c2     | integer |           |          |   
  
postgres=# alter sequence tbl_id_seq cache 10000;  
ALTER SEQUENCE

2、寫入2億測試數據

vi test.sql  
\set gid random_gaussian(1,1000,2.5)  
\set prodid random_gaussian(1,1000000,2.5)  
\set c1 random(1,3000)  
\set c2 random(1,100000000)  
insert into tbl(gid,prodid,c1,c2) values (:gid,:prodid,:c1,:c2);  
  
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 1200
postgres=# select count(*) from tbl;  
   count     
-----------  
 216524755  
(1 row)  
  
Time: 421.860 ms

3、幾組真實的TOPN數據

postgres=# select gid,count(*) from tbl group by gid order by count(*) desc limit 10;  
 gid | count    
-----+--------  
 494 | 438102  
 499 | 438017  
 514 | 437929  
 506 | 437852  
 511 | 437546  
 509 | 437469  
 495 | 437458  
 490 | 437320  
 496 | 437257  
 500 | 437239  
(10 rows)  
  
postgres=# select c1,count(*) from tbl group by c1 order by count(*) desc limit 10;  
  c1  | count   
------+-------  
 1370 | 73175  
  168 | 73121  
 1016 | 73114  
 1816 | 73045  
 1463 | 73020  
  585 | 72986  
 1529 | 72974  
 1857 | 72944  
 2580 | 72930  
  298 | 72917  
(10 rows)  
  
postgres=# select prodid,count(*) from tbl group by prodid order by count(*) desc limit 10;  
 prodid | count   
--------+-------  
 516916 |   534  
 481914 |   534  
 520680 |   527  
 530544 |   526  
 449685 |   523  
 493560 |   523  
 520464 |   523  
 502098 |   522  
 495170 |   522  
 501695 |   522  
(10 rows)

4、gid維度估值topn (gid唯一值個數小于等于參數 topn.number_of_counters )

結果精準

CREATE TABLE reviews_by_gid  
(    
  agg jsonb  
);  
  
SELECT create_reference_table('reviews_by_gid');  
  
INSERT INTO reviews_by_gid  
  SELECT topn_add_agg(gid::text)  
  FROM tbl;  
  
postgres=# select  (topn(agg,5)).* from reviews_by_gid;  
 item | frequency   
------+-----------  
 494  |    438102  
 499  |    438017  
 514  |    437929  
 506  |    437852  
 511  |    437546  
(5 rows)

5、prodid維度估值topn (prodid唯一值個數遠遠大于等于參數 topn.number_of_counters )

結果偏差非常大。

CREATE TABLE reviews_by_prodid  
(  
  agg_prodid jsonb  
);  
  
SELECT create_reference_table('reviews_by_prodid');  
  
INSERT INTO reviews_by_prodid  
  SELECT topn_add_agg(prodid::text)  
  FROM tbl;  
  
  
postgres=# select  (topn(agg_prodid,5)).* from reviews_by_prodid;  
  item  | frequency   
--------+-----------  
 470098 |        36  
 531880 |        35  
 451724 |        34  
 420093 |        34  
 522676 |        33  
(5 rows)

6、c1維度估值topn (c1唯一值個數略大于等于參數 topn.number_of_counters )

結果不精準。

CREATE TABLE reviews_by_c1  
(  
  aggc1 jsonb  
);  
  
SELECT create_reference_table('reviews_by_c1');  
  
INSERT INTO reviews_by_c1  
  SELECT topn_add_agg(c1::text)  
  FROM tbl;  
  
  
postgres=# select  (topn(aggc1,5)).* from reviews_by_c1;  
 item | frequency   
------+-----------  
 2580 |     37073  
 1016 |     36162  
 1983 |     35311  
 1752 |     35285  
 2354 |     34740  
(5 rows)

精度、截斷

造成以上精準度偏差的原因:

當topn hashtable已滿,有新值寫入時,會導致清除hashtable中一半的元素(item, count)pairs(指按count排序后,較小的一半)。

The TopN approximation algorithm keeps a predefined number of frequent items and counters. If a new item already exists among these frequent items, the algorithm increases the item's frequency counter. Else, the algorithm inserts the new item into the counter list when there is enough space. If there isn't enough space, the algorithm evicts the bottom half of all counters. Since we typically keep counters for many more items (e.g. 100*N) than we are actually interested in, the actual top N items are unlikely to get evicted and will typically have accurate counts.

You can increase the algoritm's accuracy by increasing the predefined number of frequent items/counters.

對應代碼

/*  
 * PruneHashTable removes some items from the HashTable to decrease its size. It finds  
 * minimum and maximum frequencies first and removes the items which have lower frequency  
 * than the average of them.  
 */  
static void  
PruneHashTable(HTAB *hashTable, int itemLimit, int numberOfRemainingElements)  
{  
	Size topnArraySize = 0;  
	int topnIndex = 0;  
	FrequentTopnItem *sortedTopnArray = NULL;  
	bool itemAlreadyHashed = false;  
	HASH_SEQ_STATUS status;  
	FrequentTopnItem *currentTask = NULL;  
	FrequentTopnItem *frequentTopnItem = NULL;  
	int index = 0;  
	int hashTableSize = hash_get_num_entries(hashTable);  
  
	if (hashTableSize <= itemLimit)  
	{  
		return;  
	}  
  
	/* create an array to copy top-n items and sort them later */  
	topnArraySize = sizeof(FrequentTopnItem) * hashTableSize;  
	sortedTopnArray = (FrequentTopnItem *) palloc0(topnArraySize);  
  
	hash_seq_init(&status, hashTable);  
  
	while ((currentTask = (FrequentTopnItem *) hash_seq_search(&status)) != NULL)  
	{  
		frequentTopnItem = palloc0(sizeof(FrequentTopnItem));  
		memcpy(frequentTopnItem->key, currentTask->key,  
			   sizeof(frequentTopnItem->key));  
		frequentTopnItem->frequency = currentTask->frequency;  
		sortedTopnArray[topnIndex] = *frequentTopnItem;  
  
		topnIndex++;  
	}  
  
	qsort(sortedTopnArray, hashTableSize, sizeof(FrequentTopnItem),  
		  compareFrequentTopnItem);  
  
	for (index = numberOfRemainingElements; index < hashTableSize; index++)  
	{  
		FrequentTopnItem *topnItem = &(sortedTopnArray[index]);  
  
		hash_search(hashTable, (void *) topnItem->key, HASH_REMOVE,  
					&itemAlreadyHashed);  
	}  
}

如何修改hash table size

postgres=# load 'topn';  
LOAD  
postgres=# show topn.number_of_counters ;  
 topn.number_of_counters   
-------------------------  
 1000  
(1 row)  
  
set topn.number_of_counters =20000;

需要在所有節點(coordinator+worker)操作,例如。

postgresql.conf  
  
shared_preload_libraries='citus,topn,pg_stat_statements'  
topn.number_of_counters=10000

小結

最佳實踐

1、建議階段性聚合,并且保證每個階段被聚合的字段,唯一值個數小于 topn.number_of_counters ,否則會失真。

例如每小時有1萬個活躍用戶,那么 topn.number_of_counters ,建議設置為1萬或更大,并且按小時聚合。每個小時存一個聚合后的jsonb結果。需要統計天的結果時,再將全天的jsonb進行聚合。

2、元素個數大于 topn.number_of_counters 時,會導致topn結果失真。

參考

https://github.com/citusdata/postgresql-topn

https://docs.citusdata.com/en/v7.5/develop/reference_sql.html

《PostgreSQL count-min sketch top-n 概率計算插件 cms_topn (結合窗口實現同比、環比、滑窗分析等) - 流計算核心功能之一》

原文地址:https://github.com/digoal/blog/blob/master/201809/20180914_01.md

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

府谷县| 怀远县| 徐闻县| 崇州市| 阿城市| 城步| 西昌市| 桂阳县| 谷城县| 方正县| 嘉峪关市| 台北市| 公安县| 攀枝花市| 松溪县| 简阳市| 晋城| 漳浦县| 桐柏县| 东兰县| 房山区| 安泽县| 上虞市| 广德县| 南康市| 嘉荫县| 张家港市| 永泰县| 塘沽区| 大安市| 平阴县| 微博| 洛南县| 石首市| 浮山县| 大足县| 长葛市| 保德县| 方城县| 遵化市| 高要市|