亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

PostgreSQL中HashAggregate與GroupAggregate的區別是什么

發布時間:2021-11-09 14:13:36 來源:億速云 閱讀:258 作者:iii 欄目:關系型數據庫

本篇內容介紹了“PostgreSQL中HashAggregate與GroupAggregate的區別是什么”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!


案例一

首先我們看一個案例:
測試表:

drop table  if exists t_agg;
create table t_agg(bh varchar(20),c1 int,c2 int,c3 int,c4 int,c5 int,c6 int);
insert into t_agg select 'GZ01',col,col,col,col,col,col from generate_series(1,100000) as col;
insert into t_agg select 'GZ02',col,col,col,col,col,col from generate_series(1,100000) as col;
insert into t_agg select 'GZ03',col,col,col,col,col,col from generate_series(1,100000) as col;
insert into t_agg select 'GZ04',col,col,col,col,col,col from generate_series(1,100000) as col;
insert into t_agg select 'GZ05',col,col,col,col,col,col from generate_series(1,100000) as col;

執行查詢:

testdb=# -- 禁用并行
testdb=# set max_parallel_workers_per_gather=0;
SET
testdb=# explain verbose select bh,min(c1),max(c1),min(c2),max(c2),min(c3),max(c3),min(c4),max(c4),min(c5),max(c5) from t_agg group by bh;
                                               QUERY PLAN                                               
--------------------------------------------------------------------------------------------------------
 HashAggregate  (cost=22427.00..22427.05 rows=5 width=45)
   Output: bh, min(c1), max(c1), min(c2), max(c2), min(c3), max(c3), min(c4), max(c4), min(c5), max(c5)
   Group Key: t_agg.bh
   ->  Seq Scan on public.t_agg  (cost=0.00..8677.00 rows=500000 width=25)
         Output: bh, c1, c2, c3, c4, c5, c6
(5 rows)

PG的優化器選擇了HashAggregate.
下面禁用HashAggregate,優化器只能選擇GroupAggregate.可以看到兩者的總成本比較:22427.05 vs 82968.97

testdb=# set enable_hashagg = off;
SET
testdb=# explain verbose select bh,min(c1),max(c1),min(c2),max(c2),min(c3),max(c3),min(c4),max(c4),min(c5),max(c5) from t_agg group by bh;
                                               QUERY PLAN                                               
--------------------------------------------------------------------------------------------------------
 GroupAggregate  (cost=67968.92..82968.97 rows=5 width=45)
   Output: bh, min(c1), max(c1), min(c2), max(c2), min(c3), max(c3), min(c4), max(c4), min(c5), max(c5)
   Group Key: t_agg.bh
   ->  Sort  (cost=67968.92..69218.92 rows=500000 width=25)
         Output: bh, c1, c2, c3, c4, c5
         Sort Key: t_agg.bh
         ->  Seq Scan on public.t_agg  (cost=0.00..8677.00 rows=500000 width=25)
               Output: bh, c1, c2, c3, c4, c5
(8 rows)

案例二
下面用一個寬表來進行測試:分組鍵值很少,但聚合列很多

drop table  if exists t_agg_width;
create table t_agg_width
(bh varchar(20)
,c1 int,c2 int,c3 int,c4 int,c5 int,c6 int,c7 int,c8 int,c9 int
,c11 int,c12 int,c13 int,c14 int,c15 int,c16 int,c17 int,c18 int,c19 int
,c21 int,c22 int,c23 int,c24 int,c25 int,c26 int,c27 int,c28 int,c29 int
,c31 int,c32 int,c33 int,c34 int,c35 int,c36 int,c37 int,c38 int,c39 int);
insert into t_agg_width 
select 'GZ01'
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
from generate_series(1,100000) as col;
insert into t_agg_width 
select 'GZ02'
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
from generate_series(1,100000) as col;
insert into t_agg_width 
select 'GZ03'
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
from generate_series(1,100000) as col;
insert into t_agg_width 
select 'GZ04'
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
,col,col,col,col,col,col,col,col,col 
from generate_series(1,100000) as col;
-- 禁用hashagg
set enable_hashagg = off;
-- 禁用并行
set max_parallel_workers_per_gather=0;
select bh
,min(c1),min(c2) ,min(c3) ,min(c4) ,min(c5) ,min(c6) ,min(c7) ,min(c8) ,min(c9)
,min(c11),min(c12) ,min(c13) ,min(c14) ,min(c15) ,min(c16) ,min(c17) ,min(c18) ,min(c19)
,min(c21),min(c22) ,min(c23) ,min(c24) ,min(c25) ,min(c26) ,min(c27) ,min(c28) ,min(c29)
,min(c31),min(c32) ,min(c33) ,min(c34) ,min(c35) ,min(c36) ,min(c37) ,min(c38) ,min(c39)
from t_agg_width group by bh;

在這種情況下,優化器仍會選擇Hash

testdb=# explain verbose select bh
testdb-# ,min(c1),min(c2) ,min(c3) ,min(c4) ,min(c5) ,min(c6) ,min(c7) ,min(c8) ,min(c9)
testdb-# ,min(c11),min(c12) ,min(c13) ,min(c14) ,min(c15) ,min(c16) ,min(c17) ,min(c18) ,min(c19)
testdb-# ,min(c21),min(c22) ,min(c23) ,min(c24) ,min(c25) ,min(c26) ,min(c27) ,min(c28) ,min(c29)
testdb-# ,min(c31),min(c32) ,min(c33) ,min(c34) ,min(c35) ,min(c36) ,min(c37) ,min(c38) ,min(c39)
testdb-# from t_agg_width group by bh;
                                                    QUERY PLAN                                                               
----------------------------------------------------------------------------------------------------------
 HashAggregate  (cost=49889.00..49889.04 rows=4 width=149)
   Output: bh, min(c1), min(c2), min(c3), min(c4), min(c5), min(c6), min(c7), min(c8), min(c9), min(c11), min(c12), min(c13),
 min(c14), min(c15), min(c16), min(c17), min(c18), min(c19), min(c21), min(c22), min(c23), min(c24), min(c25), min(c26), min(
c27), min(c28), min(c29), min(c31), min(c32), min(c33), min(c34), min(c35), min(c36), min(c37), min(c38), min(c39)
   Group Key: t_agg_width.bh
   ->  Seq Scan on public.t_agg_width  (cost=0.00..12889.00 rows=400000 width=149)
         Output: bh, c1, c2, c3, c4, c5, c6, c7, c8, c9, c11, c12, c13, c14, c15, c16, c17, c18, c19, c21, c22, c23, c24, c25
, c26, c27, c28, c29, c31, c32, c33, c34, c35, c36, c37, c38, c39
(5 rows)
testdb=# set enable_hashagg = off;
SET
testdb=# explain verbose select bh
,min(c1),min(c2) ,min(c3) ,min(c4) ,min(c5) ,min(c6) ,min(c7) ,min(c8) ,min(c9)
,min(c11),min(c12) ,min(c13) ,min(c14) ,min(c15) ,min(c16) ,min(c17) ,min(c18) ,min(c19)
,min(c21),min(c22) ,min(c23) ,min(c24) ,min(c25) ,min(c26) ,min(c27) ,min(c28) ,min(c29)
,min(c31),min(c32) ,min(c33) ,min(c34) ,min(c35) ,min(c36) ,min(c37) ,min(c38) ,min(c39)
from t_agg_width group by bh;
                                                    QUERY PLAN                                                               
----------------------------------------------------------------------------------------------------------
 GroupAggregate  (cost=110266.28..148266.32 rows=4 width=149)
   Output: bh, min(c1), min(c2), min(c3), min(c4), min(c5), min(c6), min(c7), min(c8), min(c9), min(c11), min(c12), min(c13),
 min(c14), min(c15), min(c16), min(c17), min(c18), min(c19), min(c21), min(c22), min(c23), min(c24), min(c25), min(c26), min(
c27), min(c28), min(c29), min(c31), min(c32), min(c33), min(c34), min(c35), min(c36), min(c37), min(c38), min(c39)
   Group Key: t_agg_width.bh
   ->  Sort  (cost=110266.28..111266.28 rows=400000 width=149)
         Output: bh, c1, c2, c3, c4, c5, c6, c7, c8, c9, c11, c12, c13, c14, c15, c16, c17, c18, c19, c21, c22, c23, c24, c25
, c26, c27, c28, c29, c31, c32, c33, c34, c35, c36, c37, c38, c39
         Sort Key: t_agg_width.bh
         ->  Seq Scan on public.t_agg_width  (cost=0.00..12889.00 rows=400000 width=149)
               Output: bh, c1, c2, c3, c4, c5, c6, c7, c8, c9, c11, c12, c13, c14, c15, c16, c17, c18, c19, c21, c22, c23, c2
4, c25, c26, c27, c28, c29, c31, c32, c33, c34, c35, c36, c37, c38, c39
(8 rows)
testdb=#

下面增大分組鍵值的分布,同時提高c1等列的選擇率,再次測試:

testdb=# insert into t_agg_width 
testdb-# select 'GZ'||col
testdb-# ,mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100) 
testdb-# ,mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100) 
testdb-# ,mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100) 
testdb-# ,mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100),mod(col,100) 
testdb-# from generate_series(1,1000000) as col;
INSERT 0 1000000
testdb=# set enable_hashagg = on;
SET
testdb=# explain verbose select bh
,min(c1),min(c2) ,min(c3) ,min(c4) ,min(c5) ,min(c6) ,min(c7) ,min(c8) ,min(c9)
,min(c11),min(c12) ,min(c13) ,min(c14) ,min(c15) ,min(c16) ,min(c17) ,min(c18) ,min(c19)
,min(c21),min(c22) ,min(c23) ,min(c24) ,min(c25) ,min(c26) ,min(c27) ,min(c28) ,min(c29)
,min(c31),min(c32) ,min(c33) ,min(c34) ,min(c35) ,min(c36) ,min(c37) ,min(c38) ,min(c39)
from t_agg_width group by bh;
                                                    QUERY PLAN                                                               
----------------------------------------------------------------------------------------------------------
 GroupAggregate  (cost=440012.46..586553.52 rows=7414 width=149)
   Output: bh, min(c1), min(c2), min(c3), min(c4), min(c5), min(c6), min(c7), min(c8), min(c9), min(c11), min(c12), min(c13),
 min(c14), min(c15), min(c16), min(c17), min(c18), min(c19), min(c21), min(c22), min(c23), min(c24), min(c25), min(c26), min(
c27), min(c28), min(c29), min(c31), min(c32), min(c33), min(c34), min(c35), min(c36), min(c37), min(c38), min(c39)
   Group Key: t_agg_width.bh
   ->  Sort  (cost=440012.46..443866.86 rows=1541757 width=149)
         Output: bh, c1, c2, c3, c4, c5, c6, c7, c8, c9, c11, c12, c13, c14, c15, c16, c17, c18, c19, c21, c22, c23, c24, c25
, c26, c27, c28, c29, c31, c32, c33, c34, c35, c36, c37, c38, c39
         Sort Key: t_agg_width.bh
         ->  Seq Scan on public.t_agg_width  (cost=0.00..49681.57 rows=1541757 width=149)
               Output: bh, c1, c2, c3, c4, c5, c6, c7, c8, c9, c11, c12, c13, c14, c15, c16, c17, c18, c19, c21, c22, c23, c2
4, c25, c26, c27, c28, c29, c31, c32, c33, c34, c35, c36, c37, c38, c39
(8 rows)
testdb=#

這一次選擇的是GroupAggregate.

HashAggregate
HashAggregate,數據庫會根據group by字段后面的值算出hash值,并在內存中維護對應的Hash表,比如select有n個聚合函數,那么在內存中就會維護n個Hash表.這種方式使用的內存比GroupAggregate要大,內存的使用與group by COLUMN中的COLUMN的唯一鍵值以及聚合列的多少成正比.

GroupAggregate
GroupAggregate,數據庫先將表中的數據按group by的字段進行排序,然后對排好序的數據進行一次掃描,計算得到聚合的結果.這種方式需要先執行一次排序,計算復雜度上面要比HashAggregate要高,但這種方法的好處是與group by COLUMN中的COLUMN的唯一鍵值多寡/聚合列多寡無關,分組鍵值很多而且聚合列很多且列數據選擇很高的情況下,會優于HashAggregate.

“PostgreSQL中HashAggregate與GroupAggregate的區別是什么”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

逊克县| 容城县| 加查县| 武义县| 政和县| 乌兰县| 兴化市| 芜湖市| 和静县| 烟台市| 苗栗县| 兴安盟| 新昌县| 广元市| 淳化县| 孝义市| 磐安县| 南京市| 德安县| 怀远县| 大安市| 兴宁市| 荥阳市| 富阳市| 长海县| 奇台县| 旬阳县| 马山县| 桦甸市| 甘孜县| 古蔺县| 洪湖市| 锡林郭勒盟| 满洲里市| 方山县| 嘉峪关市| 甘洛县| 通辽市| 苍南县| 汶川县| 宕昌县|