您好,登錄后才能下訂單哦!
小編給大家分享一下keras中自定義loss層如何接受輸入值的案例,希望大家閱讀完這篇文章后大所收獲,下面讓我們一起去探討方法吧!
loss函數如何接受輸入值
keras封裝的比較厲害,官網給的例子寫的云里霧里,
在stackoverflow找到了答案
You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function).
def custom_loss_wrapper(input_tensor): def custom_loss(y_true, y_pred): return K.binary_crossentropy(y_true, y_pred) + K.mean(input_tensor) return custom_loss
input_tensor = Input(shape=(10,)) hidden = Dense(100, activation='relu')(input_tensor) out = Dense(1, activation='sigmoid')(hidden) model = Model(input_tensor, out) model.compile(loss=custom_loss_wrapper(input_tensor), optimizer='adam')
You can verify that input_tensor and the loss value will change as different X is passed to the model.
X = np.random.rand(1000, 10) y = np.random.randint(2, size=1000) model.test_on_batch(X, y) # => 1.1974642 X *= 1000 model.test_on_batch(X, y) # => 511.15466
fit_generator
fit_generator ultimately calls train_on_batch which allows for x to be a dictionary.
Also, it could be a list, in which casex is expected to map 1:1 to the inputs defined in Model(input=[in1, …], …)
### generator yield [inputX_1,inputX_2],y ### model model = Model(inputs=[inputX_1,inputX_2],outputs=...)
補充知識:keras中自定義 loss損失函數和修改不同樣本的loss權重(樣本權重、類別權重)
首先辨析一下概念:
1. loss是整體網絡進行優化的目標, 是需要參與到優化運算,更新權值W的過程的
2. metric只是作為評價網絡表現的一種“指標”, 比如accuracy,是為了直觀地了解算法的效果,充當view的作用,并不參與到優化過程
一、keras自定義損失函數
在keras中實現自定義loss, 可以有兩種方式,一種自定義 loss function, 例如:
# 方式一 def vae_loss(x, x_decoded_mean): xent_loss = objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma), axis=-1) return xent_loss + kl_loss vae.compile(optimizer='rmsprop', loss=vae_loss)
或者通過自定義一個keras的層(layer)來達到目的, 作為model的最后一層,最后令model.compile中的loss=None:
# 方式二 # Custom loss layer class CustomVariationalLayer(Layer): def __init__(self, **kwargs): self.is_placeholder = True super(CustomVariationalLayer, self).__init__(**kwargs) def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss) def call(self, inputs): x = inputs[0] x_decoded_mean_squash = inputs[1] loss = self.vae_loss(x, x_decoded_mean_squash) self.add_loss(loss, inputs=inputs) # We don't use this output. return x y = CustomVariationalLayer()([x, x_decoded_mean_squash]) vae = Model(x, y) vae.compile(optimizer='rmsprop', loss=None)
在keras中自定義metric非常簡單,需要用y_pred和y_true作為自定義metric函數的輸入參數 點擊查看metric的設置
注意事項:
1. keras中定義loss,返回的是batch_size長度的tensor, 而不是像tensorflow中那樣是一個scalar
2. 為了能夠將自定義的loss保存到model, 以及可以之后能夠順利load model, 需要把自定義的loss拷貝到keras.losses.py 源代碼文件下,否則運行時找不到相關信息,keras會報錯
有時需要不同的sample的loss施加不同的權重,這時需要用到sample_weight,例如
discriminator.train_on_batch(imgs, [valid, labels], class_weight=class_weights)
二、keras中的樣本權重
# Import import numpy as np from sklearn.utils import class_weight # Example model model = Sequential() model.add(Dense(32, activation='relu', input_dim=100)) model.add(Dense(1, activation='sigmoid')) # Use binary crossentropy loss model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # Calculate the weights for each class so that we can balance the data weights = class_weight.compute_class_weight('balanced', np.unique(y_train), y_train) # Add the class weights to the training model.fit(x_train, y_train, epochs=10, batch_size=32, class_weight=weights)
Note that the output of the class_weight.compute_class_weight() is an numpy array like this: [2.57569845 0.68250928].
看完了這篇文章,相信你對keras中自定義loss層如何接受輸入值的案例有了一定的了解,想了解更多相關知識,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。