您好,登錄后才能下訂單哦!
小編給大家分享一下python數據挖掘指的是什么,相信大部分人都還不怎么了解,因此分享這邊文章給大家學習,希望大家閱讀完這篇文章后大所收獲,下面讓我們一起去學習方法吧!
數據挖掘(data mining,簡稱DM),是指從大量的數據中,通過統計學、人工智能、機器學習等方法,挖掘出未知的、且有價值的信
息和知識的過程。
python數據挖掘常用模塊
numpy模塊:用于矩陣運算、隨機數的生成等
pandas模塊:用于數據的讀取、清洗、整理、運算、可視化等
matplotlib模塊:專用于數據可視化,當然含有統計類的seaborn模塊
statsmodels模塊:用于構建統計模型,如線性回歸、嶺回歸、邏輯回歸、主成分分析等
scipy模塊:專用于統計中的各種假設檢驗,如卡方檢驗、相關系數檢驗、正態性檢驗、t檢驗、F檢驗等
sklearn模塊:專用于機器學習,包含了常規的數據挖掘算法,如決策樹、森林樹、提升樹、貝葉斯、K近鄰、SVM、GBDT、Kmeans等
數據分析和挖掘推薦的入門方式是?小公司如何利用數據分析和挖掘?
關于數據分析與挖掘的入門方式是先實現代碼和Python語法的落地(前期也需要你了解一些統計學知識、數學知識等),這個過程需要
你多閱讀相關的數據和查閱社區、論壇。然后你在代碼落地的過程中一定會對算法中的參數或結果產生疑問,此時再去查看統計學和數據
挖掘方面的理論知識。這樣就形成了問題為導向的學習方法,如果將入門順序搞反了,可能在硬著頭皮研究理論算法的過程中就打退堂鼓
了。
對于小公司來說,你得清楚的知道自己的痛點是什么,這些痛點是否能夠體現在數據上,公司內部的交易數據、營銷數據、倉儲數據等是
否比較齊全。在這些數據的基礎上搭建核心KPI作為每日或每周的經營健康度衡量,數據分析側重于歷史的描述,數據挖掘則側重于未來
的預測。
差異在于對數據的敏感度和對數據的個性化理解。換句話說,就是懂分析的人能夠從數據中看出破綻,解決問題,甚至用數據創造價值;
不懂分析的人,做不到這些,更多的是描述數據。
以上是python數據挖掘指的是什么的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。