您好,登錄后才能下訂單哦!
這篇文章主要為大家展示了“Java并發編程中Semaphore計數信號量的示例分析”,內容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領大家一起研究并學習一下“Java并發編程中Semaphore計數信號量的示例分析”這篇文章吧。
Semaphore 是一個計數信號量,它的本質是一個共享鎖。信號量維護了一個信號量許可集。線程可以通過調用acquire()來獲取信號量的許可;當信號量中有可用的許可時,線程能獲取該許可;否則線程必須等待,直到有可用的許可為止。 線程可以通過release()來釋放它所持有的信號量許可(用完信號量之后必須釋放,不然其他線程可能會無法獲取信號量)。
簡單示例:
package me.socketthread; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; public class SemaphoreLearn { //信號量總數 private static final int SEM_MAX = 12; public static void main(String[] args) { Semaphore sem = new Semaphore(SEM_MAX); //創建線程池 ExecutorService threadPool = Executors.newFixedThreadPool(3); //在線程池中執行任務 threadPool.execute(new MyThread(sem, 7)); threadPool.execute(new MyThread(sem, 4)); threadPool.execute(new MyThread(sem, 2)); //關閉池 threadPool.shutdown(); } } class MyThread extends Thread { private volatile Semaphore sem; // 信號量 private int count; // 申請信號量的大小 MyThread(Semaphore sem, int count) { this.sem = sem; this.count = count; } public void run() { try { // 從信號量中獲取count個許可 sem.acquire(count); Thread.sleep(2000); System.out.println(Thread.currentThread().getName() + " acquire count="+count); } catch (InterruptedException e) { e.printStackTrace(); } finally { // 釋放給定數目的許可,將其返回到信號量。 sem.release(count); System.out.println(Thread.currentThread().getName() + " release " + count + ""); } } }
執行結果:
pool-1-thread-2 acquire count=4 pool-1-thread-1 acquire count=7 pool-1-thread-1 release 7 pool-1-thread-2 release 4 pool-1-thread-3 acquire count=2 pool-1-thread-3 release 2
線程1和線程2會并發執行,因為兩者的信號量和沒有超過總信號量,當前兩個線程釋放掉信號量之后線程3才能繼續執行。
源碼分析:
1、構造函數
在構造函數中會初始化信號量值,這值最終是作為鎖標志位state的值
Semaphore sem = new Semaphore(12);//簡單來說就是給鎖標識位state賦值為12
2、Semaphore.acquire(n);簡單理解為獲取鎖資源,如果獲取不到線程阻塞
Semaphore.acquire(n);//從鎖標識位state中獲取n個信號量,簡單來說是state = state-n 此時state大于0表示可以獲取信號量,如果小于0則將線程阻塞
public void acquire(int permits) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); //獲取鎖 sync.acquireSharedInterruptibly(permits); }
acquireSharedInterruptibly中的操作是獲取鎖資源,如果可以獲取則將state= state-permits,否則將線程阻塞
public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); if (tryAcquireShared(arg) < 0)//tryAcquireShared中嘗試獲取鎖資源 doAcquireSharedInterruptibly(arg); //將線程阻塞 }
tryAcquireShared中的操作是嘗試獲取信號量值,簡單來說就是state=state-acquires ,如果此時小于0則返回負值,否則返回大于新值,再判斷是否將當線程線程阻塞
protected int tryAcquireShared(int acquires) { for (;;) { if (hasQueuedPredecessors()) return -1; //獲取state值 int available = getState(); //從state中獲取信號量 int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) //如果信號量小于0則直接返回,表示無法獲取信號量,否則將state值修改為新值 return remaining; } }
doAcquireSharedInterruptibly中的操作簡單來說是將當前線程添加到FIFO隊列中并將當前線程阻塞。
/會將線程添加到FIFO隊列中,并阻塞 private void doAcquireSharedInterruptibly(int arg) throws InterruptedException { //將線程添加到FIFO隊列中 final Node node = addWaiter(Node.SHARED); boolean failed = true; try { for (;;) { final Node p = node.predecessor(); if (p == head) { int r = tryAcquireShared(arg); if (r >= 0) { setHeadAndPropagate(node, r); p.next = null; // help GC failed = false; return; } } //parkAndCheckInterrupt完成線程的阻塞操作 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) throw new InterruptedException(); } } finally { if (failed) cancelAcquire(node); } }
3、Semaphore.release(int permits),這個函數的實現操作是將state = state+permits并喚起處于FIFO隊列中的阻塞線程。
public void release(int permits) { if (permits < 0) throw new IllegalArgumentException(); //state = state+permits,并將FIFO隊列中的阻塞線程喚起 sync.releaseShared(permits); }
releaseShared中的操作是將state = state+permits,并將FIFO隊列中的阻塞線程喚起。
public final boolean releaseShared(int arg) { //tryReleaseShared將state設置為state = state+arg if (tryReleaseShared(arg)) { //喚起FIFO隊列中的阻塞線程 doReleaseShared(); return true; } return false; }
tryReleaseShared將state設置為state = state+arg
protected final boolean tryReleaseShared(int releases) { for (;;) { int current = getState(); int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); //將state值設置為state=state+releases if (compareAndSetState(current, next)) return true; } }
doReleaseShared()喚起FIFO隊列中的阻塞線程
private void doReleaseShared() { for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases //完成阻塞線程的喚起操作 unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; } }
總結:Semaphore簡單來說設置了一個信號量池state,當線程執行時會從state中獲取值,如果可以獲取則線程執行,并且在執行后將獲取的資源返回到信號量池中,并喚起其他阻塞線程;如果信號量池中的資源無法滿足某個線程的需求則將此線程阻塞。
Semaphore源碼:
public class Semaphore implements java.io.Serializable { private static final long serialVersionUID = -3222578661600680210L; private final Sync sync; abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 1192457210091910933L; //設置鎖標識位state的初始值 Sync(int permits) { setState(permits); } //獲取鎖標識位state的值,如果state值大于其需要的值則表示鎖可以獲取 final int getPermits() { return getState(); } //獲取state值減去acquires后的值,如果大于等于0則表示鎖可以獲取 final int nonfairTryAcquireShared(int acquires) { for (;;) { int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } //釋放鎖 protected final boolean tryReleaseShared(int releases) { for (;;) { int current = getState(); //將state值加上release值 int next = current + releases; if (next < current) // overflow throw new Error("Maximum permit count exceeded"); if (compareAndSetState(current, next)) return true; } } //將state的值減去reductions final void reducePermits(int reductions) { for (;;) { int current = getState(); int next = current - reductions; if (next > current) // underflow throw new Error("Permit count underflow"); if (compareAndSetState(current, next)) return; } } final int drainPermits() { for (;;) { int current = getState(); if (current == 0 || compareAndSetState(current, 0)) return current; } } } //非公平鎖 static final class NonfairSync extends Sync { private static final long serialVersionUID = -2694183684443567898L; NonfairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires); } } //公平鎖 static final class FairSync extends Sync { private static final long serialVersionUID = 2014338818796000944L; FairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { for (;;) { if (hasQueuedPredecessors()) return -1; int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } } //設置信號量 public Semaphore(int permits) { sync = new NonfairSync(permits); } public Semaphore(int permits, boolean fair) { sync = fair ? new FairSync(permits) : new NonfairSync(permits); } //獲取鎖 public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1); } public void acquireUninterruptibly() { sync.acquireShared(1); } public boolean tryAcquire() { return sync.nonfairTryAcquireShared(1) >= 0; } public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } public void release() { sync.releaseShared(1); } //獲取permits值鎖 public void acquire(int permits) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); sync.acquireSharedInterruptibly(permits); } public void acquireUninterruptibly(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.acquireShared(permits); } public boolean tryAcquire(int permits) { if (permits < 0) throw new IllegalArgumentException(); return sync.nonfairTryAcquireShared(permits) >= 0; } public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout)); } //釋放 public void release(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.releaseShared(permits); } public int availablePermits() { return sync.getPermits(); } public int drainPermits() { return sync.drainPermits(); } protected void reducePermits(int reduction) { if (reduction < 0) throw new IllegalArgumentException(); sync.reducePermits(reduction); } public boolean isFair() { return sync instanceof FairSync; } public final boolean hasQueuedThreads() { return sync.hasQueuedThreads(); } public final int getQueueLength() { return sync.getQueueLength(); } protected Collection<Thread> getQueuedThreads() { return sync.getQueuedThreads(); } public String toString() { return super.toString() + "[Permits = " + sync.getPermits() + "]"; } }
以上是“Java并發編程中Semaphore計數信號量的示例分析”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。