您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關numpy中怎么數組元素統一賦值,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
例子1:
In [2]: arr =np.empty((8,4)) In [3]: arr Out[3]: array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) In [4]: arr[1] = 1 In [5]: arr Out[5]: array([[ 0., 0., 0., 0.], [ 1., 1., 1., 1.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]])
例子2:
In [6]: arr1 =np.empty(2) In [8]: arr1 Out[8]:array([ 7.74860419e-304, 7.74860419e-304]) In [9]: arr1 = 0 In [10]: arr1 Out[10]: 0
這兩段看上去似乎出現了行為不一致,其實利用一般面向對象的標簽理解模型還是能夠理解的。
例子1中,加上了索引之后的標簽其實指代的就是具體的存儲區,而例子2中,直接使用了一個標簽而已。那么這樣如何實現對一個一維數組的全體賦值呢?其實只需要進行全部元素的索引即可,
具體方法實現如下:
In [11]: arr1 =np.empty(2) In [12]: arr1 Out[12]: array([0., 0.]) In [13]: arr1[:] Out[13]: array([0., 0.]) In [14]: arr1[:] =0 In [15]: arr1 Out[15]: array([0., 0.])
上述就是小編為大家分享的numpy中怎么數組元素統一賦值了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。