亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Pandas 數據框增、刪、改、查、去重、抽樣基本操作方法

發布時間:2020-09-15 08:55:52 來源:腳本之家 閱讀:243 作者:Claroja 欄目:開發技術

總括

pandas的索引函數主要有三種:

loc 標簽索引,行和列的名稱

iloc 整型索引(絕對位置索引),絕對意義上的幾行幾列,起始索引為0

ix 是 iloc 和 loc的合體

at是loc的快捷方式

iat是iloc的快捷方式

建立測試數據集:

import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]})
print(df)
 a b c
0 1 a A
1 2 b B
2 3 c C

行操作

選擇某一行

print(df.loc[1,:])
a 2
b b
c B
Name: 1, dtype: object

選擇多行

print(df.loc[1:2,:])#選擇1:2行,slice為1
 a b c
1 2 b B
2 3 c C
print(df.loc[::-1,:])#選擇所有行,slice為-1,所以為倒序
 a b c
2 3 c C
1 2 b B
0 1 a A
print(df.loc[0:2:2,:])#選擇0至2行,slice為2,等同于print(df.loc[0:2:2,:])因為只有3行
 a b c
0 1 a A
2 3 c C

條件篩選

普通條件篩選

print(df.loc[:,"a"]>2)#原理是首先做了一個判斷,然后再篩選
0 False
1 False
2  True
Name: a, dtype: bool
print(df.loc[df.loc[:,"a"]>2,:])
 a b c
2 3 c C

另外條件篩選還可以集邏輯運算符 | for or, & for and, and ~for not

In [129]: s = pd.Series(range(-3, 4))
In [132]: s[(s < -1) | (s > 0.5)]
Out[132]: 
0 -3
1 -2
4 1
5 2
6 3
dtype: int64

isin

非索引列使用isin

In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
In [143]: s.isin([2, 4, 6])
Out[143]: 
4 False
3 False
2  True
1 False
0  True
dtype: bool
In [144]: s[s.isin([2, 4, 6])]
Out[144]: 
2 2
0 4
dtype: int64

索引列使用isin

In [145]: s[s.index.isin([2, 4, 6])]
Out[145]: 
4 0
2 2
dtype: int64
# compare it to the following
In [146]: s[[2, 4, 6]]
Out[146]: 
2 2.0
4 0.0
6 NaN
dtype: float64

結合any()/all()在多列索引時

In [151]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
 .....:     'ids2': ['a', 'n', 'c', 'n']})
 .....: 
In [156]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
In [157]: row_mask = df.isin(values).all(1)
In [158]: df[row_mask]
Out[158]: 
 ids ids2 vals
0 a a  1

where()

In [1]: dates = pd.date_range('1/1/2000', periods=8)
In [2]: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
In [3]: df
Out[3]: 
     A   B   C   D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
In [162]: df.where(df < 0, -df)
Out[162]: 
     A   B   C   D
2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203
2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416
2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048
2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

DataFrame.where() differs from numpy.where()的區別

In [172]: df.where(df < 0, -df) == np.where(df < 0, df, -df)

當series對象使用where()時,則返回一個序列

In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
In [159]: s[s > 0]
Out[159]: 
3 1
2 2
1 3
0 4
dtype: int64
In [160]: s.where(s > 0)
Out[160]: 
4 NaN
3 1.0
2 2.0
1 3.0
0 4.0
dtype: float64

抽樣篩選

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

當在有權重篩選時,未賦值的列權重為0,如果權重和不為1,則將會將每個權重除以總和。random_state可以設置抽樣的種子(seed)。axis可是設置列隨機抽樣。

In [105]: df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})
In [106]: df2.sample(n = 3, weights = 'weight_column')
Out[106]: 
 col1 weight_column
1  8   0.4
0  9   0.5
2  7   0.1

增加行

df.loc[3,:]=4
  a b c
0 1.0 a A
1 2.0 b B
2 3.0 c C
3 4.0 4 4

插入行

pandas里并沒有直接指定索引的插入行的方法,所以要自己設置

line = pd.DataFrame({df.columns[0]:"--",df.columns[1]:"--",df.columns[2]:"--"},index=[1])
df = pd.concat([df.loc[:0],line,df.loc[1:]]).reset_index(drop=True)#df.loc[:0]這里不能寫成df.loc[0],因為df.loc[0]返回的是series
  a b c
0 1.0 a A
1 -- -- --
2 2.0 b B
3 3.0 c C
4 4.0 4 4

交換行

df.loc[[1,2],:]=df.loc[[2,1],:].values
 a b c
0 1 a A
1 3 c C
2 2 b B

刪除行

df.drop(0,axis=0,inplace=True)
print(df)
 a b c
1 2 b B
2 3 c C

注意

在以時間作為索引的數據框中,索引是以整形的方式來的。

In [39]: dfl = pd.DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=pd.date_range('20130101',periods=5))
In [40]: dfl
Out[40]: 
     A   B   C   D
2013-01-01 1.075770 -0.109050 1.643563 -1.469388
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
2013-01-05 0.895717 0.805244 -1.206412 2.565646
In [41]: dfl.loc['20130102':'20130104']
Out[41]: 
     A   B   C   D
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

列操作

選擇某一列

print(df.loc[:,"a"])
0 1
1 2
2 3
Name: a, dtype: int64

選擇多列

print(df.loc[:,"a":"b"])
 a b
0 1 a
1 2 b
2 3 c

增加列,如果對已有的列,則是賦值

df.loc[:,"d"]=4
 a b c d
0 1 a A 4
1 2 b B 4
2 3 c C 4

交換兩列的值

df.loc[:,['b', 'a']] = df.loc[:,['a', 'b']].values
print(df)
 a b c
0 a 1 A
1 b 2 B
2 c 3 C

刪除列

1)直接del DF[‘column-name']

2)采用drop方法,有下面三種等價的表達式:

DF= DF.drop(‘column_name', 1);

DF.drop(‘column_name',axis=1, inplace=True)

DF.drop([DF.columns[[0,1,]]], axis=1,inplace=True)

df.drop("a",axis=1,inplace=True)
print(df)
 b c
0 a A
1 b B
2 c C

還有一些其他的功能:

切片df.loc[::,::]

選擇隨機抽樣df.sample()

去重.duplicated()

查詢.lookup

以上這篇Pandas 數據框增、刪、改、查、去重、抽樣基本操作方法就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

左权县| 辽中县| 兴化市| 溆浦县| 车险| 镇原县| 巩义市| 渝北区| 苏尼特左旗| 大冶市| 石屏县| 玉溪市| 云浮市| 辽阳县| 屏东县| 汤原县| 越西县| 乌拉特中旗| 府谷县| 德化县| 遂宁市| 特克斯县| 兴义市| 从化市| 兴海县| 广汉市| 布尔津县| 巨野县| 咸丰县| 三台县| 安阳县| 泰和县| 池州市| 长治市| 垣曲县| 霍州市| 尚志市| 三原县| 扎赉特旗| 德化县| 馆陶县|