亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

基于python神經卷積網絡的人臉識別

發布時間:2020-08-24 12:07:11 來源:腳本之家 閱讀:258 作者:Lxingmo 欄目:開發技術

本文實例為大家分享了基于神經卷積網絡的人臉識別,供大家參考,具體內容如下

1.人臉識別整體設計方案

基于python神經卷積網絡的人臉識別

客_服交互流程圖:

基于python神經卷積網絡的人臉識別

2.服務端代碼展示

sk = socket.socket() 
# s.bind(address) 將套接字綁定到地址。在AF_INET下,以元組(host,port)的形式表示地址。 
sk.bind(("172.29.25.11",8007)) 
# 開始監聽傳入連接。 
sk.listen(True) 
 
while True: 
 for i in range(100): 
  # 接受連接并返回(conn,address),conn是新的套接字對象,可以用來接收和發送數據。address是連接客戶端的地址。 
  conn,address = sk.accept() 
 
  # 建立圖片存儲路徑 
  path = str(i+1) + '.jpg' 
 
  # 接收圖片大小(字節數) 
  size = conn.recv(1024) 
  size_str = str(size,encoding="utf-8") 
  size_str = size_str[2 :] 
  file_size = int(size_str) 
 
  # 響應接收完成 
  conn.sendall(bytes('finish', encoding="utf-8")) 
 
  # 已經接收數據大小 has_size 
  has_size = 0 
  # 創建圖片并寫入數據 
  f = open(path,"wb") 
  while True: 
   # 獲取 
   if file_size == has_size: 
    break 
   date = conn.recv(1024) 
   f.write(date) 
   has_size += len(date) 
  f.close() 
 
  # 圖片縮放 
  resize(path) 
  # cut_img(path):圖片裁剪成功返回True;失敗返回False 
  if cut_img(path): 
   yuchuli() 
   result = test('test.jpg') 
   conn.sendall(bytes(result,encoding="utf-8")) 
  else: 
   print('falue') 
   conn.sendall(bytes('人眼檢測失敗,請保持圖片眼睛清晰',encoding="utf-8")) 
  conn.close() 

3.圖片預處理

1)圖片縮放

# 根據圖片大小等比例縮放圖片 
def resize(path): 
 image=cv2.imread(path,0) 
 row,col = image.shape 
 if row >= 2500: 
  x,y = int(row/5),int(col/5) 
 elif row >= 2000: 
  x,y = int(row/4),int(col/4) 
 elif row >= 1500: 
  x,y = int(row/3),int(col/3) 
 elif row >= 1000: 
  x,y = int(row/2),int(col/2) 
 else: 
  x,y = row,col 
 # 縮放函數 
 res=cv2.resize(image,(y,x),interpolation=cv2.INTER_CUBIC) 
 cv2.imwrite(path,res) 

2)直方圖均衡化和中值濾波

# 直方圖均衡化 
eq = cv2.equalizeHist(img) 
# 中值濾波 
lbimg=cv2.medianBlur(eq,3) 

3)人眼檢測

# -*- coding: utf-8 -*- 
# 檢測人眼,返回眼睛數據 
 
import numpy as np 
import cv2 
 
def eye_test(path): 
 # 待檢測的人臉路徑 
 imagepath = path 
 
 # 獲取訓練好的人臉參數 
 eyeglasses_cascade = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml') 
 
 # 讀取圖片 
 img = cv2.imread(imagepath) 
 # 轉為灰度圖像 
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
 
 # 檢測并獲取人眼數據 
 eyeglasses = eyeglasses_cascade.detectMultiScale(gray) 
 # 人眼數為2時返回左右眼位置數據 
 if len(eyeglasses) == 2: 
  num = 0 
  for (e_gx,e_gy,e_gw,e_gh) in eyeglasses: 
   cv2.rectangle(img,(e_gx,e_gy),(e_gx+int(e_gw/2),e_gy+int(e_gh/2)),(0,0,255),2) 
   if num == 0: 
    x1,y1 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) 
   else: 
    x2,y2 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) 
   num += 1 
  print('eye_test') 
  return x1,y1,x2,y2 
 else: 
  return False 

4)人眼對齊并裁剪

# -*- coding: utf-8 -*- 
# 人眼對齊并裁剪 
 
# 參數含義: 
# CropFace(image, eye_left, eye_right, offset_pct, dest_sz) 
# eye_left is the position of the left eye 
# eye_right is the position of the right eye 
# 比例的含義為:要保留的圖像靠近眼鏡的百分比, 
# offset_pct is the percent of the image you want to keep next to the eyes (horizontal, vertical direction) 
# 最后保留的圖像的大小。 
# dest_sz is the size of the output image 
# 
import sys,math 
from PIL import Image 
from eye_test import eye_test 
 
 # 計算兩個坐標的距離 
def Distance(p1,p2): 
 dx = p2[0]- p1[0] 
 dy = p2[1]- p1[1] 
 return math.sqrt(dx*dx+dy*dy) 
 
 # 根據參數,求仿射變換矩陣和變換后的圖像。 
def ScaleRotateTranslate(image, angle, center =None, new_center =None, scale =None, resample=Image.BICUBIC): 
 if (scale is None)and (center is None): 
  return image.rotate(angle=angle, resample=resample) 
 nx,ny = x,y = center 
 sx=sy=1.0 
 if new_center: 
  (nx,ny) = new_center 
 if scale: 
  (sx,sy) = (scale, scale) 
 cosine = math.cos(angle) 
 sine = math.sin(angle) 
 a = cosine/sx 
 b = sine/sx 
 c = x-nx*a-ny*b 
 d =-sine/sy 
 e = cosine/sy 
 f = y-nx*d-ny*e 
 return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample) 
 
 # 根據所給的人臉圖像,眼睛坐標位置,偏移比例,輸出的大小,來進行裁剪。 
def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)): 
 # calculate offsets in original image 計算在原始圖像上的偏移。 
 offset_h = math.floor(float(offset_pct[0])*dest_sz[0]) 
 offset_v = math.floor(float(offset_pct[1])*dest_sz[1]) 
 # get the direction 計算眼睛的方向。 
 eye_direction = (eye_right[0]- eye_left[0], eye_right[1]- eye_left[1]) 
 # calc rotation angle in radians 計算旋轉的方向弧度。 
 rotation =-math.atan2(float(eye_direction[1]),float(eye_direction[0])) 
 # distance between them # 計算兩眼之間的距離。 
 dist = Distance(eye_left, eye_right) 
 # calculate the reference eye-width 計算最后輸出的圖像兩只眼睛之間的距離。 
 reference = dest_sz[0]-2.0*offset_h 
 # scale factor # 計算尺度因子。 
 scale =float(dist)/float(reference) 
 # rotate original around the left eye # 原圖像繞著左眼的坐標旋轉。 
 image = ScaleRotateTranslate(image, center=eye_left, angle=rotation) 
 # crop the rotated image # 剪切 
 crop_xy = (eye_left[0]- scale*offset_h, eye_left[1]- scale*offset_v) # 起點 
 crop_size = (dest_sz[0]*scale, dest_sz[1]*scale) # 大小 
 image = image.crop((int(crop_xy[0]),int(crop_xy[1]),int(crop_xy[0]+crop_size[0]),int(crop_xy[1]+crop_size[1]))) 
 # resize it 重置大小 
 image = image.resize(dest_sz, Image.ANTIALIAS) 
 return image 
 
def cut_img(path): 
 image = Image.open(path) 
 
 # 人眼識別成功返回True;否則,返回False 
 if eye_test(path): 
  print('cut_img') 
  # 獲取人眼數據 
  leftx,lefty,rightx,righty = eye_test(path) 
 
  # 確定左眼和右眼位置 
  if leftx > rightx: 
   temp_x,temp_y = leftx,lefty 
   leftx,lefty = rightx,righty 
   rightx,righty = temp_x,temp_y 
 
  # 進行人眼對齊并保存截圖 
  CropFace(image, eye_left=(leftx,lefty), eye_right=(rightx,righty), offset_pct=(0.30,0.30), dest_sz=(92,112)).save('test.jpg') 
  return True 
 else: 
  print('falue') 
  return False 

4.用神經卷積網絡訓練數據

# -*- coding: utf-8 -*- 
 
from numpy import * 
import cv2 
import tensorflow as tf 
 
# 圖片大小 
TYPE = 112*92 
# 訓練人數 
PEOPLENUM = 42 
# 每人訓練圖片數 
TRAINNUM = 15 #( train_face_num ) 
# 單人訓練人數加測試人數 
EACH = 21 #( test_face_num + train_face_num ) 
 
# 2維=>1維 
def img2vector1(filename): 
 img = cv2.imread(filename,0) 
 row,col = img.shape 
 vector1 = zeros((1,row*col)) 
 vector1 = reshape(img,(1,row*col)) 
 return vector1 
 
# 獲取人臉數據 
def ReadData(k): 
 path = 'face_flip/' 
 train_face = zeros((PEOPLENUM*k,TYPE),float32) 
 train_face_num = zeros((PEOPLENUM*k,PEOPLENUM)) 
 test_face = zeros((PEOPLENUM*(EACH-k),TYPE),float32) 
 test_face_num = zeros((PEOPLENUM*(EACH-k),PEOPLENUM)) 
 
 # 建立42個人的訓練人臉集和測試人臉集 
 for i in range(PEOPLENUM): 
  # 單前獲取人 
  people_num = i + 1 
  for j in range(k): 
   #獲取圖片路徑 
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' 
   #2維=>1維 
   img = img2vector1(filename) 
 
   #train_face:每一行為一幅圖的數據;train_face_num:儲存每幅圖片屬于哪個人 
   train_face[i*k+j,:] = img/255 
   train_face_num[i*k+j,people_num-1] = 1 
 
  for j in range(k,EACH): 
   #獲取圖片路徑 
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' 
 
   #2維=>1維 
   img = img2vector1(filename) 
 
   # test_face:每一行為一幅圖的數據;test_face_num:儲存每幅圖片屬于哪個人 
   test_face[i*(EACH-k)+(j-k),:] = img/255 
   test_face_num[i*(EACH-k)+(j-k),people_num-1] = 1 
 
 return train_face,train_face_num,test_face,test_face_num 
 
# 獲取訓練和測試人臉集與對應lable 
train_face,train_face_num,test_face,test_face_num = ReadData(TRAINNUM) 
 
# 計算測試集成功率 
def compute_accuracy(v_xs, v_ys): 
 global prediction 
 y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1}) 
 correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) 
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 
 result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1}) 
 return result 
 
# 神經元權重 
def weight_variable(shape): 
 initial = tf.truncated_normal(shape, stddev=0.1) 
 return tf.Variable(initial) 
 
# 神經元偏置 
def bias_variable(shape): 
 initial = tf.constant(0.1, shape=shape) 
 return tf.Variable(initial) 
 
# 卷積 
def conv2d(x, W): 
 # stride [1, x_movement, y_movement, 1] 
 # Must have strides[0] = strides[3] = 1 
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
# 最大池化,x,y步進值均為2 
def max_pool_2x2(x): 
 # stride [1, x_movement, y_movement, 1] 
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 
 
 
# define placeholder for inputs to network 
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42個輸出 
keep_prob = tf.placeholder(tf.float32) 
x_image = tf.reshape(xs, [-1, 112, 92, 1]) 
# print(x_image.shape) # [n_samples, 112,92,1] 
 
# 第一層卷積層 
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 
b_conv1 = bias_variable([32]) 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 
 
 
# 第二層卷積層 
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 
b_conv2 = bias_variable([64]) 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 
 
 
# 第一層神經網絡全連接層 
W_fc1 = weight_variable([28*23*64, 1024]) 
b_fc1 = bias_variable([1024]) 
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64] 
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
 
# 第二層神經網絡全連接層 
W_fc2 = weight_variable([1024, PEOPLENUM]) 
b_fc2 = bias_variable([PEOPLENUM]) 
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 
 
 
# 交叉熵損失函數 
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = tf.matmul(h_fc1_drop, W_fc2)+b_fc2, labels=ys)) 
regularizers = tf.nn.l2_loss(W_fc1) + tf.nn.l2_loss(b_fc1) +tf.nn.l2_loss(W_fc2) + tf.nn.l2_loss(b_fc2) 
# 將正則項加入損失函數 
cost += 5e-4 * regularizers 
# 優化器優化誤差值 
train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) 
 
sess = tf.Session() 
init = tf.global_variables_initializer() 
saver = tf.train.Saver() 
sess.run(init) 
 
# 訓練1000次,每50次輸出測試集測試結果 
for i in range(1000): 
 sess.run(train_step, feed_dict={xs: train_face, ys: train_face_num, keep_prob: 0.5}) 
 if i % 50 == 0: 
  print(sess.run(prediction[0],feed_dict= {xs: test_face,ys: test_face_num,keep_prob: 1})) 
  print(compute_accuracy(test_face,test_face_num)) 
# 保存訓練數據 
save_path = saver.save(sess,'my_data/save_net.ckpt') 

5.用神經卷積網絡測試數據

# -*- coding: utf-8 -*- 
# 兩層神經卷積網絡加兩層全連接神經網絡 
 
from numpy import * 
import cv2 
import tensorflow as tf 
 
# 神經網絡最終輸出個數 
PEOPLENUM = 42 
 
# 2維=>1維 
def img2vector1(img): 
 row,col = img.shape 
 vector1 = zeros((1,row*col),float32) 
 vector1 = reshape(img,(1,row*col)) 
 return vector1 
 
# 神經元權重 
def weight_variable(shape): 
 initial = tf.truncated_normal(shape, stddev=0.1) 
 return tf.Variable(initial) 
 
# 神經元偏置 
def bias_variable(shape): 
 initial = tf.constant(0.1, shape=shape) 
 return tf.Variable(initial) 
 
# 卷積 
def conv2d(x, W): 
 # stride [1, x_movement, y_movement, 1] 
 # Must have strides[0] = strides[3] = 1 
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
# 最大池化,x,y步進值均為2 
def max_pool_2x2(x): 
 # stride [1, x_movement, y_movement, 1] 
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 
 
# define placeholder for inputs to network 
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42個輸出 
keep_prob = tf.placeholder(tf.float32) 
x_image = tf.reshape(xs, [-1, 112, 92, 1]) 
# print(x_image.shape) # [n_samples, 112,92,1] 
 
# 第一層卷積層 
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 
b_conv1 = bias_variable([32]) 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 
 
 
# 第二層卷積層 
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 
b_conv2 = bias_variable([64]) 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 
 
 
# 第一層神經網絡全連接層 
W_fc1 = weight_variable([28*23*64, 1024]) 
b_fc1 = bias_variable([1024]) 
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64] 
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
 
# 第二層神經網絡全連接層 
W_fc2 = weight_variable([1024, PEOPLENUM]) 
b_fc2 = bias_variable([PEOPLENUM]) 
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 
 
sess = tf.Session() 
init = tf.global_variables_initializer() 
 
# 下載訓練數據 
saver = tf.train.Saver() 
saver.restore(sess,'my_data/save_net.ckpt') 
 
# 返回簽到人名 
def find_people(people_num): 
 if people_num == 41: 
  return '任童霖' 
 elif people_num == 42: 
  return 'LZT' 
 else: 
  return 'another people' 
 
def test(path): 
 # 獲取處理后人臉 
 img = cv2.imread(path,0)/255 
 test_face = img2vector1(img) 
 print('true_test') 
 
 # 計算輸出比重最大的人及其所占比重 
 prediction1 = sess.run(prediction,feed_dict={xs:test_face,keep_prob:1}) 
 prediction1 = prediction1[0].tolist() 
 people_num = prediction1.index(max(prediction1))+1 
 result = max(prediction1)/sum(prediction1) 
 print(result,find_people(people_num)) 
 
 # 神經網絡輸出最大比重大于0.5則匹配成功 
 if result > 0.50: 
  # 保存簽到數據 
  qiandaobiao = load('save.npy') 
  qiandaobiao[people_num-1] = 1 
  save('save.npy',qiandaobiao) 
 
  # 返回 人名+簽到成功 
  print(find_people(people_num) + '已簽到') 
  result = find_people(people_num) + ' 簽到成功' 
 else: 
  result = '簽到失敗' 
 return result 

神經卷積網絡入門簡介

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

兴义市| 岳普湖县| 池州市| 东丽区| 鄱阳县| 梁山县| 福安市| 台北市| 仁布县| 灵宝市| 台东市| 永修县| 民县| 昌图县| 鄯善县| 调兵山市| 景泰县| 岫岩| 集贤县| 岳普湖县| 高尔夫| 焦作市| 康保县| 松江区| 庆安县| 上杭县| 海城市| 信阳市| 洛宁县| 乐陵市| 蛟河市| 麻阳| 岳普湖县| 潞城市| 高清| 故城县| 华阴市| 马山县| 平和县| 阿鲁科尔沁旗| 临朐县|