您好,登錄后才能下訂單哦!
小編給大家分享一下如何使用Python實現爬蟲爬取NBA數據功能,希望大家閱讀完這篇文章之后都有所收獲,下面讓我們一起去探討吧!
具體如下:
爬取的網站為:stat-nba.com,這里爬取的是NBA2016-2017賽季常規賽至2017年1月7日的數據
改變url_header和url_tail即可爬取特定的其他數據。
源代碼如下:
#coding=utf-8 import sys reload(sys) sys.setdefaultencoding('utf-8') import requests import time import urllib from bs4 import BeautifulSoup import re from pyExcelerator import * def getURLLists(url_header,url_tail,pages): """ 獲取所有頁面的URL列表 """ url_lists = [] url_0 = url_header+'0'+url_tail print url_0 url_lists.append(url_0) for i in range(1,pages+1): url_temp = url_header+str(i)+url_tail url_lists.append(url_temp) return url_lists def getNBAAllData(url_lists): """ 獲取所有2017賽季NBA常規賽數據 """ datasets = [''] for item in url_lists: data1 = getNBASingleData(item) datasets.extend(data1) #去掉數據里的空元素 for item in datasets[:]: if len(item) == 0: datasets.remove(item) return datasets def getNBASingleData(url): """ 獲取1個頁面NBA常規賽數據 """ # url = 'http://stat-nba.com/query_team.php?QueryType=game&order=1&crtcol=date_out&GameType=season&PageNum=3000&Season0=2016&Season1=2017' # html = requests.get(url).text html = urllib.urlopen(url).read() # print html soup = BeautifulSoup(html) data = soup.html.body.find('tbody').text list_data = data.split('\n') # with open('nba_data.txt','a') as fp: # fp.write(data) # for item in list_data[:]: # if len(item) == 0: # list_data.remove(item) return list_data def saveDataToExcel(datasets,sheetname,filename): book = Workbook() sheet = book.add_sheet(sheetname) sheet.write(0,0,u'序號') sheet.write(0,1,u'球隊') sheet.write(0,2,u'時間') sheet.write(0,3,u'結果') sheet.write(0,4,u'主客') sheet.write(0,5,u'比賽') sheet.write(0,6,u'投籃命中率') sheet.write(0,7,u'命中數') sheet.write(0,8,u'出手數') sheet.write(0,9,u'三分命中率') sheet.write(0,10,u'三分命中數') sheet.write(0,11,u'三分出手數') sheet.write(0,12,u'罰球命中率') sheet.write(0,13,u'罰球命中數') sheet.write(0,14,u'罰球出手數') sheet.write(0,15,u'籃板') sheet.write(0,16,u'前場籃板') sheet.write(0,17,u'后場籃板') sheet.write(0,18,u'助攻') sheet.write(0,19,u'搶斷') sheet.write(0,20,u'蓋帽') sheet.write(0,21,u'失誤') sheet.write(0,22,u'犯規') sheet.write(0,23,u'得分') num = 24 row_cnt = 0 data_cnt = 0 data_len = len(datasets) print 'data_len:',data_len while(data_cnt< data_len): row_cnt += 1 print '序號:',row_cnt for col in range(num): # print col sheet.write(row_cnt,col,datasets[data_cnt]) data_cnt += 1 book.save(filename) def writeDataToTxt(datasets): fp = open('nba_data.txt','w') line_cnt = 1 for i in range(len(datasets)-1): #球隊名稱對齊的操作:如果球隊名字過短或者為76人隊是 球隊名字后面加兩個table 否則加1個table if line_cnt % 24 == 2 and len(datasets[i]) < 5 or datasets[i] == u'費城76人': fp.write(datasets[i]+'\t\t') else: fp.write(datasets[i]+'\t') line_cnt += 1 if line_cnt % 24 == 1: fp.write('\n') fp.close() if __name__ == "__main__": pages = int(1132/150) url_header = 'http://stat-nba.com/query_team.php?page=' url_tail = '&QueryType=game&order=1&crtcol=date_out&GameType=season&PageNum=3000&Season0=2016&Season1=2017#label_show_result' url_lists = getURLLists(url_header,url_tail,pages) datasets = getNBAAllData(url_lists) writeDataToTxt(datasets) sheetname = 'nba normal data 2016-2017' str_time = time.strftime('%Y-%m-%d',time.localtime(time.time())) filename = 'nba_normal_data'+str_time+'.xls' saveDataToExcel(datasets,sheetname,filename)
看完了這篇文章,相信你對“如何使用Python實現爬蟲爬取NBA數據功能”有了一定的了解,如果想了解更多相關知識,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。