亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python中MNIST手寫識別數據調用API的示例分析

發布時間:2021-08-06 09:36:34 來源:億速云 閱讀:191 作者:小新 欄目:開發技術

這篇文章主要介紹了python中MNIST手寫識別數據調用API的示例分析,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

MNIST數據集比較小,一般入門機器學習都會采用這個數據集來訓練

下載地址:yann.lecun.com/exdb/mnist/

有4個有用的文件:
train-images-idx3-ubyte: training set images
train-labels-idx1-ubyte: training set labels
t10k-images-idx3-ubyte: test set images
t10k-labels-idx1-ubyte: test set labels

The training set contains 60000 examples, and the test set 10000 examples. 數據集存儲是用binary file存儲的,黑白圖片。

下面給出load數據集的代碼:

import os
import struct
import numpy as np
import matplotlib.pyplot as plt

def load_mnist():
  '''
  Load mnist data
  http://yann.lecun.com/exdb/mnist/

  60000 training examples
  10000 test sets

  Arguments:
    kind: 'train' or 'test', string charater input with a default value 'train'

  Return:
    xxx_images: n*m array, n is the sample count, m is the feature number which is 28*28
    xxx_labels: class labels for each image, (0-9)
  '''

  root_path = '/home/cc/deep_learning/data_sets/mnist'

  train_labels_path = os.path.join(root_path, 'train-labels.idx1-ubyte')
  train_images_path = os.path.join(root_path, 'train-images.idx3-ubyte')

  test_labels_path = os.path.join(root_path, 't10k-labels.idx1-ubyte')
  test_images_path = os.path.join(root_path, 't10k-images.idx3-ubyte')

  with open(train_labels_path, 'rb') as lpath:
    # '>' denotes bigedian
    # 'I' denotes unsigned char
    magic, n = struct.unpack('>II', lpath.read(8))
    #loaded = np.fromfile(lpath, dtype = np.uint8)
    train_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

  with open(train_images_path, 'rb') as ipath:
    magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
    loaded = np.fromfile(train_images_path, dtype = np.uint8)
    # images start from the 16th bytes
    train_images = loaded[16:].reshape(len(train_labels), 784).astype(np.float)

  with open(test_labels_path, 'rb') as lpath:
    # '>' denotes bigedian
    # 'I' denotes unsigned char
    magic, n = struct.unpack('>II', lpath.read(8))
    #loaded = np.fromfile(lpath, dtype = np.uint8)
    test_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

  with open(test_images_path, 'rb') as ipath:
    magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
    loaded = np.fromfile(test_images_path, dtype = np.uint8)
    # images start from the 16th bytes
    test_images = loaded[16:].reshape(len(test_labels), 784)  

  return train_images, train_labels, test_images, test_labels

再看看圖片集是什么樣的:

def test_mnist_data():
  '''
  Just to check the data

  Argument:
    none

  Return:
    none
  '''
  train_images, train_labels, test_images, test_labels = load_mnist()
  fig, ax = plt.subplots(nrows = 2, ncols = 5, sharex = True, sharey = True)
  ax =ax.flatten()
  for i in range(10):
    img = train_images[i][:].reshape(28, 28)
    ax[i].imshow(img, cmap = 'Greys', interpolation = 'nearest')
    print('corresponding labels = %d' %train_labels[i])

if __name__ == '__main__':
  test_mnist_data()

跑出的結果如下:

python中MNIST手寫識別數據調用API的示例分析

感謝你能夠認真閱讀完這篇文章,希望小編分享的“python中MNIST手寫識別數據調用API的示例分析”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

泸定县| 闵行区| 宾川县| 阿克苏市| 前郭尔| 团风县| 建瓯市| 遵义县| 新沂市| 甘洛县| 页游| 横峰县| 阳高县| 韶山市| 抚宁县| 榕江县| 台湾省| 永春县| 中卫市| 英山县| 邯郸市| 宜黄县| 益阳市| 青铜峡市| 巴楚县| 治多县| 石楼县| 慈溪市| 图木舒克市| 博客| 双江| 会泽县| 太仓市| 旬阳县| 高台县| 南宁市| 界首市| 龙岩市| 哈尔滨市| 融水| 皋兰县|