亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

發布時間:2020-08-21 19:48:59 來源:腳本之家 閱讀:253 作者:loveliuzz 欄目:開發技術

本文實例講述了Python3.5 Pandas模塊缺失值處理和層次索引。分享給大家供大家參考,具體如下:

1、pandas缺失值處理

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

df3 = DataFrame([
  ["Tom",np.nan,456.67,"M"],
  ["Merry",34,345.56,np.nan],
  [np.nan,np.nan,np.nan,np.nan],
  ["John",23,np.nan,"M"],
  ["Joe",18,385.12,"F"]
],columns = ["name","age","salary","gender"])

print(df3)
print("=======判斷NaN值=======")
print(df3.isnull())
print("=======判斷非NaN值=======")
print(df3.notnull())
print("=======刪除包含NaN值的行=======")
print(df3.dropna())
print("=======刪除全部為NaN值的行=======")
print(df3.dropna(how="all"))

df3.ix[2,0] = "Gerry"    #修改第2行第0列的值
print(df3)

print("=======刪除包含NaN值的列=======")
print(df3.dropna(axis=1))

運行結果:

   name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
2    NaN   NaN     NaN    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
=======判斷NaN值=======
    name    age salary gender
0  False   True  False  False
1  False  False  False   True
2   True   True   True   True
3  False  False   True  False
4  False  False  False  False
=======判斷非NaN值=======
    name    age salary gender
0   True  False   True   True
1   True   True   True  False
2  False  False  False  False
3   True   True  False   True
4   True   True   True   True
=======刪除包含NaN值的行=======
  name   age  salary gender
4  Joe  18.0  385.12      F
=======刪除全部為NaN值的行=======
    name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
    name   age  salary gender
0    Tom   NaN  456.67      M
1  Merry  34.0  345.56    NaN
2  Gerry   NaN     NaN    NaN
3   John  23.0     NaN      M
4    Joe  18.0  385.12      F
=======刪除包含NaN值的列=======
    name
0    Tom
1  Merry
2  Gerry
3   John
4    Joe

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

df4 = DataFrame(np.random.randn(7,3))
print(df4)

df4.ix[:4,1] = np.nan    #第0至3行,第1列的數據
df4.ix[:2,2] = np.nan
print(df4)

print(df4.fillna(0))    #將缺失值用傳入的指定值0替換

print(df4.fillna({1:0.5,2:-1}))   #將缺失值按照指定形式填充

運行結果:

          0         1         2
0 -0.737618 -0.530302 -2.716457
1  0.810339  0.063028 -0.341343
2  0.070564  0.347308 -0.121137
3 -0.501875 -1.573071 -0.816077
4 -2.159196 -0.659185 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618       NaN       NaN
1  0.810339       NaN       NaN
2  0.070564       NaN       NaN
3 -0.501875       NaN -0.816077
4 -2.159196       NaN -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618  0.000000  0.000000
1  0.810339  0.000000  0.000000
2  0.070564  0.000000  0.000000
3 -0.501875  0.000000 -0.816077
4 -2.159196  0.000000 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323
          0         1         2
0 -0.737618  0.500000 -1.000000
1  0.810339  0.500000 -1.000000
2  0.070564  0.500000 -1.000000
3 -0.501875  0.500000 -0.816077
4 -2.159196  0.500000 -0.885185
5  0.175086 -0.954109 -0.758657
6  0.395744 -0.875943  0.950323

2、pandas常用數學統計方法

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解
Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#pandas常用數學統計方法

arr = np.array([
  [98.5,89.5,88.5],
  [98.5,85.5,88],
  [70,85,60],
  [80,85,82]
])
df1 = DataFrame(arr,columns=["語文","數學","英語"])
print(df1)
print("=======針對列計算總統計值=======")
print(df1.describe())
print("=======默認計算各列非NaN值個數=======")
print(df1.count())
print("=======計算各行非NaN值個數=======")
print(df1.count(axis=1))

運行結果:

     語文    數學    英語
0  98.5  89.5  88.5
1  98.5  85.5  88.0
2  70.0  85.0  60.0
3  80.0  85.0  82.0
=======針對列計算總統計值=======
              語文         數學         英語
count   4.000000   4.000000   4.000000
mean   86.750000  86.250000  79.625000
std    14.168627   2.179449  13.412525
min    70.000000  85.000000  60.000000
25%    77.500000  85.000000  76.500000
50%    89.250000  85.250000  85.000000
75%    98.500000  86.500000  88.125000
max    98.500000  89.500000  88.500000
=======默認計算各列非NaN值個數=======
語文    4
數學    4
英語    4
dtype: int64
=======計算各行非NaN值個數=======
0    3
1    3
2    3
3    3
dtype: int64

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame、

#2.pandas相關系數與協方差
df2 = DataFrame({
  "GDP":[12,23,34,45,56],
  "air_temperature":[23,25,26,27,30],
  "year":["2001","2002","2003","2004","2005"]
})

print(df2)
print("=========相關系數========")
print(df2.corr())
print("=========協方差========")
print(df2.cov())
print("=========兩個量之間的相關系數========")
print(df2["GDP"].corr(df2["air_temperature"]))
print("=========兩個量之間協方差========")
print(df2["GDP"].cov(df2["air_temperature"]))

運行結果:

 GDP  air_temperature  year
0   12               23  2001
1   23               25  2002
2   34               26  2003
3   45               27  2004
4   56               30  2005
=========相關系數========
                      GDP  air_temperature
GDP              1.000000         0.977356
air_temperature  0.977356         1.000000
=========協方差========
                   GDP  air_temperature
GDP              302.5             44.0
air_temperature   44.0              6.7
=========兩個量之間的相關系數========
0.97735555485
=========兩個量之間協方差========
44.0

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#3.pandas唯一值、值計數及成員資格

df3 = DataFrame({
  "order_id":["1001","1002","1003","1004","1005"],
  "member_id":["m01","m01","m02","m01","m02",],
  "order_amt":[345,312.2,123,250.2,235]
})

print(df3)

print("=========去重后的數組=========")
print(df3["member_id"].unique())

print("=========值出現的頻率=========")
print(df3["member_id"].value_counts())

print("=========成員資格=========")
df3 = df3["member_id"]
mask = df3.isin(["m01"])
print(mask)
print(df3[mask])

運行結果:

 member_id  order_amt order_id
0       m01      345.0     1001
1       m01      312.2     1002
2       m02      123.0     1003
3       m01      250.2     1004
4       m02      235.0     1005
=========去重后的數組=========
['m01' 'm02']
=========值出現的頻率=========
m01    3
m02    2
Name: member_id, dtype: int64
=========成員資格=========
0     True
1     True
2    False
3     True
4    False
Name: member_id, dtype: bool
0    m01
1    m01
3    m01
Name: member_id, dtype: object

3、pandas層次索引

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

Python3.5 Pandas模塊缺失值處理和層次索引實例詳解

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

#3.pandas層次索引
data = Series([998.4,6455,5432,9765,5432],
       index=[["2001","2001","2001","2002","2002"],
       ["蘋果","香蕉","西瓜","蘋果","西瓜"]]
       )
print(data)

df4 = DataFrame({
  "year":[2001,2001,2002,2002,2003],
  "fruit":["apple","banana","apple","banana","apple"],
  "production":[2345,5632,3245,6432,4532],
  "profits":[245.6,432.7,534.1,354,467.8]
})

print(df4)
print("=======層次化索引=======")
df4 = df4.set_index(["year","fruit"])
print(df4)
print("=======依照索引取值=======")
print(df4.ix[2002,"apple"])
print("=======依照層次化索引統計數據=======")
print(df4.sum(level="year"))
print(df4.mean(level="fruit"))
print(df4.min(level=["year","fruit"]))

運行結果:

2001  蘋果     998.4
      香蕉    6455.0
      西瓜    5432.0
2002  蘋果    9765.0
      西瓜    5432.0
dtype: float64
    fruit  production  profits  year
0   apple        2345    245.6  2001
1  banana        5632    432.7  2001
2   apple        3245    534.1  2002
3  banana        6432    354.0  2002
4   apple        4532    467.8  2003
=======層次化索引=======
             production  profits
year fruit
2001 apple         2345    245.6
     banana        5632    432.7
2002 apple         3245    534.1
     banana        6432    354.0
2003 apple         4532    467.8
=======依照索引取值=======
production    3245.0
profits        534.1
Name: (2002, apple), dtype: float64
=======依照層次化索引統計數據=======
      production  profits
year
2001        7977    678.3
2002        9677    888.1
2003        4532    467.8
        production     profits
fruit
apple         3374  415.833333
banana        6032  393.350000
             production  profits
year fruit
2001 apple         2345    245.6
     banana        5632    432.7
2002 apple         3245    534.1
     banana        6432    354.0
2003 apple         4532    467.8

更多關于Python相關內容感興趣的讀者可查看本站專題:《Python數學運算技巧總結》、《Python數據結構與算法教程》、《Python函數使用技巧總結》、《Python字符串操作技巧匯總》、《Python入門與進階經典教程》及《Python文件與目錄操作技巧匯總》

希望本文所述對大家Python程序設計有所幫助。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

梅州市| 长阳| 凤翔县| 黑河市| 抚远县| 利川市| 湖州市| 望城县| 前郭尔| 神农架林区| 金山区| 巢湖市| 武乡县| 开阳县| 安国市| 台东市| 太仓市| 韩城市| 东乌珠穆沁旗| 乌恰县| 海宁市| 揭西县| 日喀则市| 木兰县| 定南县| 集贤县| 象州县| 洛南县| 平乐县| 闽清县| 天镇县| 嘉义市| 绵阳市| 武宣县| 池州市| 会昌县| 大宁县| 仪陇县| 新乡市| 和顺县| 阳谷县|