您好,登錄后才能下訂單哦!
這篇文章主要為大家展示了“Hadoop如何對文本文件實現全局排序”,內容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領大家一起研究并學習一下“Hadoop如何對文本文件實現全局排序”這篇文章吧。
一、背景
Hadoop中實現了用于全局排序的InputSampler類和TotalOrderPartitioner類,調用示例是org.apache.hadoop.examples.Sort。
但是當我們以Text文件作為輸入時,結果并非按Text中的string列排序,而且輸出結果是SequenceFile。
原因:
1) hadoop在處理Text文件時,key是行號LongWritable類型,InputSampler抽樣的是key,TotalOrderPartitioner也是用key去查找分區。這樣,抽樣得到的partition文件是對行號的抽樣,結果自然是根據行號來排序。
2)大數據量時,InputSampler抽樣速度會非常慢。比如,RandomSampler需要遍歷所有數據,IntervalSampler需要遍歷文件數與splits數一樣。SplitSampler效率比較高,但它只抽取每個文件前面的記錄,不適合應用于文件內有序的情況。
二、功能
1. 實現了一種局部抽樣方法PartialSampler,適用于輸入數據各文件是獨立同分布的情況
2. 使RandomSampler、IntervalSampler、SplitSampler支持對文本的抽樣
3. 實現了針對Text文件string列的TotalOrderPartitioner
三、實現
1. PartialSampler
PartialSampler從第一份輸入數據中隨機抽取第一列文本數據。PartialSampler有兩個屬性:freq(采樣頻率),numSamples(采樣總數)。
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(numSamples); Random r = new Random(); long seed = r.nextLong(); r.setSeed(seed); LOG.debug("seed: " + seed); // 對splits【0】抽樣 for (int i = 0; i < 1; i++) { System.out.println("PartialSampler will getSample splits["+i+"]"); RecordReader<K,V> reader = inf.getRecordReader(splits[i], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { if (r.nextDouble() <= freq) { if (samples.size() < numSamples) { // 選擇value中的第一列抽樣 Text value0 = new Text(value.toString().split("\t")[0]); samples.add((K) value0); } else { // When exceeding the maximum number of samples, replace a // random element with this one, then adjust the frequency // to reflect the possibility of existing elements being // pushed out int ind = r.nextInt(numSamples); if (ind != numSamples) { Text value0 = new Text(value.toString().split("\t")[0]); samples.set(ind, (K) value0); } freq *= (numSamples - 1) / (double) numSamples; } key = reader.createKey(); } } reader.close(); } return (K[])samples.toArray(); }
首先通過InputFormat的getSplits方法得到所有的輸入分區;
然后掃描第一個分區中的記錄進行采樣。
記錄采樣的具體過程如下:
從指定分區中取出一條記錄,判斷得到的隨機浮點數是否小于等于采樣頻率freq
如果大于則放棄這條記錄;
如果小于,則判斷當前的采樣數是否小于最大采樣數,
如果小于則這條記錄被選中,被放進采樣集合中;
否則從【0,numSamples】中選擇一個隨機數,如果這個隨機數不等于最大采樣數numSamples,則用這條記錄替換掉采樣集合隨機數對應位置的記錄,同時采樣頻率freq減小變為freq*(numSamples-1)/numSamples。
然后依次遍歷分區中的其它記錄。
note:
1)PartialSampler只適用于輸入數據各文件是獨立同分布的情況。
2)自帶的三種Sampler通過修改samples.add(key)為samples.add((K) value0); 也可以實現對第一列的抽樣。
2. TotalOrderPartitioner
TotalOrderPartitioner主要改進了兩點:
1)讀partition時指定keyClass為Text.class
因為partition文件中的key類型為Text
在configure函數中,修改:
//Class<K> keyClass = (Class<K>)job.getMapOutputKeyClass(); Class<K> keyClass = (Class<K>)Text.class;
2)查找分區時,改用value查
public int getPartition(K key, V value, int numPartitions) { Text value0 = new Text(value.toString().split("\t")[0]); return partitions.findPartition((K) value0); }
3. Sort
1)設置InputFormat、OutputFormat、OutputKeyClass、OutputValueClass、MapOutputKeyClass
2)初始化InputSampler對象,抽樣
3)partitionFile通過CacheFile傳給TotalOrderPartitioner,執行MapReduce任務
Class<? extends InputFormat> inputFormatClass = TextInputFormat.class; Class<? extends OutputFormat> outputFormatClass = TextOutputFormat.class; Class<? extends WritableComparable> outputKeyClass = Text.class; Class<? extends Writable> outputValueClass = Text.class; jobConf.setMapOutputKeyClass(LongWritable.class); // Set user-supplied (possibly default) job configs jobConf.setNumReduceTasks(num_reduces); jobConf.setInputFormat(inputFormatClass); jobConf.setOutputFormat(outputFormatClass); jobConf.setOutputKeyClass(outputKeyClass); jobConf.setOutputValueClass(outputValueClass); if (sampler != null) { System.out.println("Sampling input to effect total-order sort..."); jobConf.setPartitionerClass(TotalOrderPartitioner.class); Path inputDir = FileInputFormat.getInputPaths(jobConf)[0]; inputDir = inputDir.makeQualified(inputDir.getFileSystem(jobConf)); //Path partitionFile = new Path(inputDir, "_sortPartitioning"); TotalOrderPartitioner.setPartitionFile(jobConf, partitionFile); InputSampler.<K,V>writePartitionFile(jobConf, sampler); URI partitionUri = new URI(partitionFile.toString() + "#" + "_sortPartitioning"); DistributedCache.addCacheFile(partitionUri, jobConf); DistributedCache.createSymlink(jobConf); } FileSystem hdfs = FileSystem.get(jobConf); hdfs.delete(outputpath); hdfs.close(); System.out.println("Running on " + cluster.getTaskTrackers() + " nodes to sort from " + FileInputFormat.getInputPaths(jobConf)[0] + " into " + FileOutputFormat.getOutputPath(jobConf) + " with " + num_reduces + " reduces."); Date startTime = new Date(); System.out.println("Job started: " + startTime); jobResult = JobClient.runJob(jobConf);
四、執行
usage:
hadoop jar yitengfei.jar com.yitengfei.Sort [-m <maps>] [-r <reduces>]
[-splitRandom <double pcnt> <numSamples> <maxsplits> | // Sample from random splits at random (general)
-splitSample <numSamples> <maxsplits> | // Sample from first records in splits (random data)
-splitInterval <double pcnt> <maxsplits>] // Sample from splits at intervals (sorted data)
-splitPartial <double pcnt> <numSamples> <maxsplits> | // Sample from partial splits at random (general) ]
<input> <output> <partitionfile>
Example:
hadoop jar yitengfei.jar com.yitengfei.Sort -r 10 -splitPartial 0.1 10000 10 /user/rp-rd/yitengfei/sample/input /user/rp-rd/yitengfei/sample/output /user/rp-rd/yitengfei/sample/partition
五、性能
200G輸入數據,15億條url,1000個分區,排序時間只用了6分鐘
以上是“Hadoop如何對文本文件實現全局排序”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。