您好,登錄后才能下訂單哦!
概要
這是這學期數字圖像處理課的第一份作業好久沒懂python手都快生了,調了好久才搞出來。
HSI顏色模型是一個滿足計算機數字化顏色管理需要的高度抽象模擬的數學模型。HIS模型是從人的視覺系統出發,直接使用顏色三要素–色調(Hue)、飽和度(Saturation)和亮度(Intensity,有時也翻譯作密度或灰度)來描述顏色。
RGB向HSI模型的轉換是由一個基于笛卡爾直角坐標系的單位立方體向基于圓柱極坐標的雙錐體的轉換。基本要求是將RGB中的亮度因素分離,通常將色調和飽和度統稱為色度,用來表示顏色的類別與深淺程度。在圖中圓錐中間的橫截面圓就是色度圓,而圓錐向上或向下延伸的便是亮度分量的表示。 (這里直接借鑒這篇文章:OpenCV+Python--RGB轉HSI的實現)
從RGB空間到HSI空間的轉換有多種方法,這里僅說明最為經典的幾何推導法。RGB轉化成HSI的公式為:
HSI轉化成RGB的公式為:
Python代碼:
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/10/14 13:21 # @Author : DaiPuWei # @Site : 理學院機房 # @File : __init__.py.py # @Software: PyCharm Community Edition import cv2 import numpy as np def RGB2HSI(rgb_img): """ 這是將RGB彩色圖像轉化為HSI圖像的函數 :param rgm_img: RGB彩色圖像 :return: HSI圖像 """ #保存原始圖像的行列數 row = np.shape(rgb_img)[0] col = np.shape(rgb_img)[1] #對原始圖像進行復制 hsi_img = rgb_img.copy() #對圖像進行通道拆分 B,G,R = cv2.split(rgb_img) #把通道歸一化到[0,1] [B,G,R] = [ i/ 255.0 for i in ([B,G,R])] H = np.zeros((row, col)) #定義H通道 I = (R + G + B) / 3.0 #計算I通道 S = np.zeros((row,col)) #定義S通道 for i in range(row): den = np.sqrt((R[i]-G[i])**2+(R[i]-B[i])*(G[i]-B[i])) thetha = np.arccos(0.5*(R[i]-B[i]+R[i]-G[i])/den) #計算夾角 h = np.zeros(col) #定義臨時數組 #den>0且G>=B的元素h賦值為thetha h[B[i]<=G[i]] = thetha[B[i]<=G[i]] #den>0且G<=B的元素h賦值為thetha h[G[i]<B[i]] = 2*np.pi-thetha[G[i]<B[i]] #den<0的元素h賦值為0 h[den == 0] = 0 H[i] = h/(2*np.pi) #弧度化后賦值給H通道 #計算S通道 for i in range(row): min = [] #找出每組RGB值的最小值 for j in range(col): arr = [B[i][j],G[i][j],R[i][j]] min.append(np.min(arr)) min = np.array(min) #計算S通道 S[i] = 1 - min*3/(R[i]+B[i]+G[i]) #I為0的值直接賦值0 S[i][R[i]+B[i]+G[i] == 0] = 0 #擴充到255以方便顯示,一般H分量在[0,2pi]之間,S和I在[0,1]之間 hsi_img[:,:,0] = H*255 hsi_img[:,:,1] = S*255 hsi_img[:,:,2] = I*255 return hsi_img def HSI2RGB(hsi_img): """ 這是將HSI圖像轉化為RGB圖像的函數 :param hsi_img: HSI彩色圖像 :return: RGB圖像 """ # 保存原始圖像的行列數 row = np.shape(hsi_img)[0] col = np.shape(hsi_img)[1] #對原始圖像進行復制 rgb_img = hsi_img.copy() #對圖像進行通道拆分 H,S,I = cv2.split(hsi_img) #把通道歸一化到[0,1] [H,S,I] = [ i/ 255.0 for i in ([H,S,I])] R,G,B = H,S,I for i in range(row): h = H[i]*2*np.pi #H大于等于0小于120度時 a1 = h >=0 a2 = h < 2*np.pi/3 a = a1 & a2 #第一種情況的花式索引 tmp = np.cos(np.pi / 3 - h) b = I[i] * (1 - S[i]) r = I[i]*(1+S[i]*np.cos(h)/tmp) g = 3*I[i]-r-b B[i][a] = b[a] R[i][a] = r[a] G[i][a] = g[a] #H大于等于120度小于240度 a1 = h >= 2*np.pi/3 a2 = h < 4*np.pi/3 a = a1 & a2 #第二種情況的花式索引 tmp = np.cos(np.pi - h) r = I[i] * (1 - S[i]) g = I[i]*(1+S[i]*np.cos(h-2*np.pi/3)/tmp) b = 3 * I[i] - r - g R[i][a] = r[a] G[i][a] = g[a] B[i][a] = b[a] #H大于等于240度小于360度 a1 = h >= 4 * np.pi / 3 a2 = h < 2 * np.pi a = a1 & a2 #第三種情況的花式索引 tmp = np.cos(5 * np.pi / 3 - h) g = I[i] * (1-S[i]) b = I[i]*(1+S[i]*np.cos(h-4*np.pi/3)/tmp) r = 3 * I[i] - g - b B[i][a] = b[a] G[i][a] = g[a] R[i][a] = r[a] rgb_img[:,:,0] = B*255 rgb_img[:,:,1] = G*255 rgb_img[:,:,2] = R*255 return rgb_img def run_main(): """ 這是主函數 """ #利用opencv讀入圖片 rgb_img = cv2.imread('1.jpeg',cv2.IMREAD_COLOR) #進行顏色空間轉換 hsi_img = RGB2HSI(rgb_img) rgb_img2 = HSI2RGB(hsi_img) #opencv庫的顏色空間轉換結果 hsi_img2 = cv2.cvtColor(rgb_img,cv2.COLOR_BGR2HSV) rgb_img3 = cv2.cvtColor(hsi_img2,cv2.COLOR_HSV2BGR) cv2.imshow("Origin",rgb_img) cv2.imshow("HSI", hsi_img) cv2.imshow("RGB",rgb_img2) cv2.imshow("OpenCV_HSI",hsi_img2) cv2.imshow("OpenCV_RGB",rgb_img3) cv2.imwrite("HSI.jpeg",hsi_img) cv2.imwrite("RGB.jpeg", rgb_img2) cv2.imwrite("OpenCV_HSI.jpeg", hsi_img2) cv2.imwrite("OpenCV_RGB.jpeg", rgb_img3) cv2.waitKey() cv2.destroyAllWindows() if __name__ == '__main__': run_main()
原始圖像為:
自己寫的RGB2HSI函數生成的HSI圖片:
opencv庫函數生成的HSI圖片:
用自己寫的函數生成導入HSI圖片執行HSI2RGB函數生成的RGB圖片:
opencv庫函數生成的HSI圖片在此執行庫函數生成RGB圖片:
以上這篇Python實現RGB與HSI顏色空間的互換方式就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。