您好,登錄后才能下訂單哦!
這篇文章主要介紹了如何通過python實現人臉識別驗證,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下
直接上代碼,此案例是根據https://github.com/caibojian/face_login修改的,識別率不怎么好,有時擋了半個臉還是成功的
# -*- coding: utf-8 -*- # __author__="maple" """ ┏┓ ┏┓ ┏┛┻━━━┛┻┓ ┃ ☃ ┃ ┃ ┳┛ ┗┳ ┃ ┃ ┻ ┃ ┗━┓ ┏━┛ ┃ ┗━━━┓ ┃ 神獸保佑 ┣┓ ┃ 永無BUG! ┏┛ ┗┓┓┏━┳┓┏┛ ┃┫┫ ┃┫┫ ┗┻┛ ┗┻┛ """ import base64 import cv2 import time from io import BytesIO from tensorflow import keras from PIL import Image from pymongo import MongoClient import tensorflow as tf import face_recognition import numpy as np #mongodb連接 conn = MongoClient('mongodb://root:123@localhost:27017/') db = conn.myface #連接mydb數據庫,沒有則自動創建 user_face = db.user_face #使用test_set集合,沒有則自動創建 face_images = db.face_images lables = [] datas = [] INPUT_NODE = 128 LATER1_NODE = 200 OUTPUT_NODE = 0 TRAIN_DATA_SIZE = 0 TEST_DATA_SIZE = 0 def generateds(): get_out_put_node() train_x, train_y, test_x, test_y = np.array(datas),np.array(lables),np.array(datas),np.array(lables) return train_x, train_y, test_x, test_y def get_out_put_node(): for item in face_images.find(): lables.append(item['user_id']) datas.append(item['face_encoding']) OUTPUT_NODE = len(set(lables)) TRAIN_DATA_SIZE = len(lables) TEST_DATA_SIZE = len(lables) return OUTPUT_NODE, TRAIN_DATA_SIZE, TEST_DATA_SIZE # 驗證臉部信息 def predict_image(image): model = tf.keras.models.load_model('face_model.h6',compile=False) face_encode = face_recognition.face_encodings(image) result = [] for j in range(len(face_encode)): predictions1 = model.predict(np.array(face_encode[j]).reshape(1, 128)) print(predictions1) if np.max(predictions1[0]) > 0.90: print(np.argmax(predictions1[0]).dtype) pred_user = user_face.find_one({'id': int(np.argmax(predictions1[0]))}) print('第%d張臉是%s' % (j+1, pred_user['user_name'])) result.append(pred_user['user_name']) return result # 保存臉部信息 def save_face(pic_path,uid): image = face_recognition.load_image_file(pic_path) face_encode = face_recognition.face_encodings(image) print(face_encode[0].shape) if(len(face_encode) == 1): face_image = { 'user_id': uid, 'face_encoding':face_encode[0].tolist() } face_images.insert_one(face_image) # 訓練臉部信息 def train_face(): train_x, train_y, test_x, test_y = generateds() dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y)) dataset = dataset.batch(32) dataset = dataset.repeat() OUTPUT_NODE, TRAIN_DATA_SIZE, TEST_DATA_SIZE = get_out_put_node() model = keras.Sequential([ keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dense(OUTPUT_NODE, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.compat.v1.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) steps_per_epoch = 30 if steps_per_epoch > len(train_x): steps_per_epoch = len(train_x) model.fit(dataset, epochs=10, steps_per_epoch=steps_per_epoch) model.save('face_model.h6') def register_face(user): if user_face.find({"user_name": user}).count() > 0: print("用戶已存在") return video_capture=cv2.VideoCapture(0) # 在MongoDB中使用sort()方法對數據進行排序,sort()方法可以通過參數指定排序的字段,并使用 1 和 -1 來指定排序的方式,其中 1 為升序,-1為降序。 finds = user_face.find().sort([("id", -1)]).limit(1) uid = 0 if finds.count() > 0: uid = finds[0]['id'] + 1 print(uid) user_info = { 'id': uid, 'user_name': user, 'create_time': time.time(), 'update_time': time.time() } user_face.insert_one(user_info) while 1: # 獲取一幀視頻 ret, frame = video_capture.read() # 窗口顯示 cv2.imshow('Video',frame) # 調整角度后連續拍5張圖片 if cv2.waitKey(1) & 0xFF == ord('q'): for i in range(1,6): cv2.imwrite('Myface{}.jpg'.format(i), frame) with open('Myface{}.jpg'.format(i),"rb")as f: img=f.read() img_data = BytesIO(img) im = Image.open(img_data) im = im.convert('RGB') imgArray = np.array(im) faces = face_recognition.face_locations(imgArray) save_face('Myface{}.jpg'.format(i),uid) break train_face() video_capture.release() cv2.destroyAllWindows() def rec_face(): video_capture = cv2.VideoCapture(0) while 1: # 獲取一幀視頻 ret, frame = video_capture.read() # 窗口顯示 cv2.imshow('Video',frame) # 驗證人臉的5照片 if cv2.waitKey(1) & 0xFF == ord('q'): for i in range(1,6): cv2.imwrite('recface{}.jpg'.format(i), frame) break res = [] for i in range(1, 6): with open('recface{}.jpg'.format(i),"rb")as f: img=f.read() img_data = BytesIO(img) im = Image.open(img_data) im = im.convert('RGB') imgArray = np.array(im) predict = predict_image(imgArray) if predict: res.extend(predict) b = set(res) # {2, 3} if len(b) == 1 and len(res) >= 3: print(" 驗證成功") else: print(" 驗證失敗") if __name__ == '__main__': register_face("maple") rec_face()
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。