您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關Python剪繩子的多種思路實現示例的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
題目:剪繩子
題:給你一根長度為n的繩子,請把繩子剪成m段(m,n都是整數,且n>1,m>1),每段繩子的長度記為k[0],k[1],k[2],...,k[m]。請問k[0]*k[1]*...*k[m]可能的最大乘積是多少?例如,當繩子的長度為8時,我們把它剪成長度分別為2,3,3的三段,此時得到的最大乘積為18。
解題思路一:基于動態規劃和貪婪算法。
class Solution: def MaxProductAfterCut(self, n): # 動態規劃 if n<2: return 0 if n==2: return 1 if n==3: return 2 products=[0]*(n+1) products[0]=0 products[1]=1 products[2]=2 products[3]=3 for i in range(4,n+1): max=0 for j in range(1,i//2+1): product=products[j]*products[i-j] if product>max: max=product products[i]=max #print(products) return products[n] def MaxProductAfterCut2(self, n): # 貪婪算法 if n < 2: return 0 if n==2: return 1 if n==3: return 2 timesOf3 = n//3 if n - timesOf3*3 == 1: timesOf3 -= 1 timesOf2 = (n - timesOf3 * 3)//2 return (3**timesOf3) * (2**timesOf2) if __name__=="__main__": print(Solution().MaxProductAfterCut(8)) print(Solution().MaxProductAfterCut(10)) #print(Solution().NumberOf1(0)) print(Solution().MaxProductAfterCut2(8)) print(Solution().MaxProductAfterCut2(10))
解題思路二:基于動態規劃和貪婪算法。
class Solution: # 動態規劃 def maxCut(self, n): if n<2: return 0 if n==2: return 1 if n==3: return 2 res=[0]*(n+1) res[0], res[1], res[2], res[3]=0, 1, 2, 3 for i in range(4, n+1): max = 0 for j in range(1, i//2+1): temp = res[j]*res[i-j] if temp>max: max = temp res[i]=max # 由下而上 return res[n] # 貪婪算法 def cutRope(length): if length<2: return 0 if length==2: return 1 if length==3: return 2 timesOf3 = length // 3 # 盡可能剪出3 if length-timesOf3*3 == 1: # 如果最后余1,則留一段4分成兩半 timesOf3 -= 1 timesOf2 = (length-timesOf3*3) // 2 return (3**timesOf3) * (2**timesOf2)
Python主要應用于:1、Web開發;2、數據科學研究;3、網絡爬蟲;4、嵌入式應用開發;5、游戲開發;6、桌面應用開發。
感謝各位的閱讀!關于“Python剪繩子的多種思路實現示例”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。