亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Pytorch中自動求梯度機制和Variable類的示例分析

發布時間:2021-07-29 09:05:54 來源:億速云 閱讀:268 作者:小新 欄目:開發技術

這篇文章主要介紹Pytorch中自動求梯度機制和Variable類的示例分析,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!

自動求導機制是每一個深度學習框架中重要的性質,免去了手動計算導數,下面用代碼介紹并舉例說明Pytorch的自動求導機制。

首先介紹Variable,Variable是對Tensor的一個封裝,操作和Tensor是一樣的,但是每個Variable都有三個屬性:Varibale的Tensor本身的.data,對應Tensor的梯度.grad,以及這個Variable是通過什么方式得到的.grad_fn,根據最新消息,在pytorch0.4更新后,torch和torch.autograd.Variable現在是同一類。torch.Tensor能像Variable那樣追蹤歷史和反向傳播。Variable仍能正確工作,但是返回的是Tensor。

我們擁抱這些新特性,看看Pytorch怎么進行自動求梯度。

#encoding:utf-8
import torch

x = torch.tensor([2.],requires_grad=True) #新建一個tensor,允許自動求梯度,這一項默認是false.
y = (x+2)**2 + 3 #y的表達式中包含x,因此y能進行自動求梯度
y.backward()
print(x.grad)

輸出結果是:

tensor([8.])

這里添加一個小知識點,即torch.Tensor和torch.tensor的不同。二者均可以生成新的張量,但torch.Tensor()是python類,是默認張量類型torch.FloatTensor()的別名,使用torch.Tensor()會調用構造函數,生成單精度浮點類型的張量。

而torch.tensor()是函數,其中data可以是list,tuple,numpy,ndarray,scalar和其他類型,但只有浮點類型的張量能夠自動求梯度。

torch.tensor(data, dtype=None, device=None, requires_grad=False)

言歸正傳,上一個例子的變量本質上是標量。下面一個例子對矩陣求導。

#encoding:utf-8
import torch

x = torch.ones((2,4),requires_grad=True)
y = torch.ones((2,1),requires_grad=True)
W = torch.ones((4,1),requires_grad=True)

J = torch.sum(y - torch.matmul(x,W)) #torch.matmul()表示對矩陣作乘法
J.backward()
print(x.grad)
print(y.grad)
print(W.grad)

輸出結果是:

tensor([[-1., -1., -1., -1.],
   [-1., -1., -1., -1.]])
tensor([[1.],
   [1.]])
tensor([[-2.],
   [-2.],
   [-2.],
   [-2.]])  

以上是“Pytorch中自動求梯度機制和Variable類的示例分析”這篇文章的所有內容,感謝各位的閱讀!希望分享的內容對大家有幫助,更多相關知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

富川| 含山县| 平邑县| 平谷区| 连江县| 东光县| 西贡区| 抚远县| 阿合奇县| 阳西县| 伊宁市| 元江| 新河县| 清新县| 策勒县| 乐亭县| 古浪县| 铁力市| 晋江市| 盖州市| 临城县| 志丹县| 济源市| 满城县| 浮山县| 黄梅县| 岢岚县| 望奎县| 绥德县| 吐鲁番市| 行唐县| 久治县| 北京市| 合肥市| 日照市| 顺昌县| 湟中县| 楚雄市| 班玛县| 南木林县| 壤塘县|