您好,登錄后才能下訂單哦!
首先需要了解的是BootLoader內存布局,在嵌入式操作系統中,BootLoader是在操作系統內核運行之前運行。可以初始化硬件設備、建立內存空間映射圖,從而將系統的軟硬件環境帶到一個合適狀態,以便為最終調用操作系統內核準備好正確的環境。在嵌入式系統中,通常并沒有像BIOS那樣的固件程序(注,有的嵌入式CPU也會內嵌一段短小的啟動程序),因此整個系統的加載啟動任務就完全由BootLoader來完成。在一個基于ARM7TDMI core的嵌入式系統中,系統在上電或復位時通常都從地址0x00000000處開始執行,而在這個地址處安排的通常就是系統的BootLoader程序。
0x7c00主引導程序的起始地址,之前為棧空間,主要是函數調用。,最終主引導程序是從boot程序跳轉到0x9000loader,中間部分為Fat表,占用4個字節
1.通過FAT表加載文件內容--流程圖
實驗步驟
1.在虛擬軟盤中創建體積較大的文本文件(Loader)
2.將Loader的內容加載到BaseOfLoader地址處
3.打印Loader中的文本(判斷加載是否完全)
org 0x7c00
jmp short start
nop
define:
BaseOfStack equ 0x7c00
BaseOfLoader equ 0x9000
RootEntryOffset equ 19
RootEntryLength equ 14
EntryItemLength equ 32
FatEntryOffset equ 1
FatEntryLength equ 9
header:
BS_OEMName db "D.T.Soft"
BPB_BytsPerSec dw 512
BPB_SecPerClus db 1
BPB_RsvdSecCnt dw 1
BPB_NumFATs db 2
BPB_RootEntCnt dw 224
BPB_TotSec16 dw 2880
BPB_Media db 0xF0
BPB_FATSz16 dw 9
BPB_SecPerTrk dw 18
BPB_NumHeads dw 2
BPB_HiddSec dd 0
BPB_TotSec32 dd 0
BS_DrvNum db 0
BS_Reserved1 db 0
BS_BootSig db 0x29
BS_VolID dd 0
BS_VolLab db "D.T.OS-0.01"
BS_FileSysType db "FAT12 "
start:
mov ax, cs
mov ss, ax
mov ds, ax
mov es, ax
mov sp, BaseOfStack
mov ax, RootEntryOffset
mov cx, RootEntryLength
mov bx, Buf
call ReadSector
mov si, Target
mov cx, TarLen
mov dx, 0
call FindEntry
cmp dx, 0
jz output
mov si, bx
mov di, EntryItem
mov cx, EntryItemLength
call MemCpy
mov ax, FatEntryLength
mov cx, [BPB_BytsPerSec]
mul cx
mov bx, BaseOfLoader
sub bx, ax
mov ax, FatEntryOffset
mov cx, FatEntryLength
call ReadSector
mov cx, [EntryItem + 0x1A]
mov si, BaseOfLoader
loading:
mov ax, dx
add ax, 31
mov cx, 1
push dx
push bx
mov bx, si
call ReadSector
pop bx
pop cx
call FatVec
cmp dx, 0xFF7
jnb BaseOfLoader
add si, 512
jmp loading
output:
mov bp, MsgStr
mov cx, MsgLen
call Print
last:
hlt
jmp last
; cx --> index
; bx --> fat table address
;
; return:
; dx --> fat[index]
FatVec:
mov ax, cx
mov cl, 2
div cl
push ax
mov ah, 0
mov cx, 3
mul cx
mov cx, ax
pop ax
cmp ah, 0
jz even
jmp odd
even: ; FatVec[j] = ( (Fat[i+1] & 0x0F) << 8 ) | Fat[i];
mov dx, cx
add dx, 1
add dx, bx
mov bp, dx
mov dl, byte [bp]
and dl, 0x0F
shl dx, 8
add cx, bx
mov bp, cx
or dl, byte [bp]
jmp return
odd: ; FatVec[j+1] = (Fat[i+2] << 4) | ( (Fat[i+1] >> 4) & 0x0F );
mov dx, cx
add dx, 2
add dx, bx
mov bp, dx
mov dl, byte [bp]
mov dh, 0
shl dx, 4
add cx, 1
add cx, bx
mov bp, cx
mov cl, byte [bp]
shr cl, 4
and cl, 0x0F
mov ch, 0
or dx, cx
return:
ret
; ds:si --> source
; es:di --> destination
; cx --> length
MemCpy:
push si
push di
push cx
push ax
cmp si, di
ja btoe
add si, cx
add di, cx
dec si
dec di
jmp etob
btoe:
cmp cx, 0
jz done
mov al, [si]
mov byte [di], al
inc si
inc di
dec cx
jmp btoe
etob:
cmp cx, 0
jz done
mov al, [si]
mov byte [di], al
dec si
dec di
dec cx
jmp etob
done:
pop ax
pop cx
pop di
pop si
ret
; es:bx --> root entry offset address
; ds:si --> target string
; cx --> target length
;
; return:
; (dx !=0 ) ? exist : noexist
; exist --> bx is the target entry
FindEntry:
push di
push bp
push cx
mov dx, [BPB_RootEntCnt]
mov bp, sp
find:
cmp dx, 0
jz noexist
mov di, bx
mov cx, [bp]
call MemCmp
cmp cx, 0
jz exist
add bx, 32
dec dx
jmp find
exist:
noexist:
pop cx
pop bp
pop di
ret
; ds:si --> source
; es:di --> destination
; cx --> length
;
; return:
; (cx == 0) ? equal : noequal
MemCmp:
push si
push di
push ax
compare:
cmp cx, 0
jz equal
mov al, [si]
cmp al, byte [di]
jz goon
jmp noequal
goon:
inc si
inc di
dec cx
jmp compare
equal:
noequal:
pop ax
pop di
pop si
ret
; es:bp --> string address
; cx --> string length
Print:
mov dx, 0
mov ax, 0x1301
mov bx, 0x0007
int 0x10
ret
; no parameter
ResetFloppy:
push ax
push dx
mov ah, 0x00
mov dl, [BS_DrvNum]
int 0x13
pop dx
pop ax
ret
; ax --> logic sector number
; cx --> number of sector
; es:bx --> target address
ReadSector:
push bx
push cx
push dx
push ax
call ResetFloppy
push bx
push cx
mov bl, [BPB_SecPerTrk]
div bl
mov cl, ah
add cl, 1
mov ch, al
shr ch, 1
mov dh, al
and dh, 1
mov dl, [BS_DrvNum]
pop ax
pop bx
mov ah, 0x02
read:
int 0x13
jc read
pop ax
pop dx
pop cx
pop bx
ret
MsgStr db "No LOADER ..."
MsgLen equ ($-MsgStr)
Target db "LOADER "
TarLen equ ($-Target)
EntryItem times EntryItemLength db 0x00
Buf:
times 510-($-$$) db 0x00
db 0x55, 0xaa
對此進行make的結果
從該結果可以看出,TIME的值為負數了,說明主引導程序的大小大于了512,我們需要將其減小,將之前不重要的入棧與出棧的操作進行刪除,以免占用空間,那么我們之前為何要這樣做呢?是為了遵守匯編代碼的約定,有操作相關寄存器的值就要進行入棧出棧操作。那么我們這塊內存已經不夠,因此沒必要進行這個操作了。我們將下面的入棧出棧操作進行刪除,但是要在 FindEntry 這個函數保留 cx 寄存器的入棧出棧的操作,原因是下面不停在改變 cx 寄存器的值。我們在 find 操作中,call MemCmp 操作前后有必要再加上 si 寄存器的入棧出棧操作
將其改正后的make以及在bochs上實現的結果為會打印loader中的字符串內容
B.第一個loader程序
1.起始地址0x9000
2.通過int0x10在屏幕上打印字符串
a.零標志位--判斷運算的結果是否為0,當運算結果為0時,ZF位的值為1
b.同時jxx代表了一個指令族,功能是根據標志位進行調整
jo當OF為1則跳轉,jc當CF為1則跳轉,jns當SF不為1則跳轉,jz當ZF為1則跳轉,je比較結果為相等則跳轉
loader.asm代碼實現
org 0x9000
begin:
mov si, msg
print:
mov al, [si]
add si, 1
cmp al, 0x00
je end
mov ah, 0x0E
mov bx, 0x0F
int 0x10
jmp print
end:
hlt
jmp end
msg:
db 0x0a, 0x0a
db "Hello, D.T.OS!"
db 0x0a, 0x0a
db 0x00
將loader.asm進行反編譯得出的結果
可以看到在這里的jz對應的是loader.asm中的je命令
接下來將loader拷貝到軟盤中去,然后從Boot跳轉到loader進行執行,我們將虛擬軟盤先在linux中進行掛載,然后進行拷貝,最后進行運行
從打印的結果可以看出,控制權從boot已經轉移到loader程序了
將其打印結果進行修改看在bochs上的實現結果是否也修改了
在這里我們需要將makefile文件進行修改保證后期的運行簡便
.PHONY : all clean rebuild
BOOT_SRC := boot.asm
BOOT_OUT := boot
LOADER_SRC := loader.asm
LOADER_OUT := loader
IMG := data.img
IMG_PATH := /mnt/hgfs
RM := rm -fr
all : $(IMG) $(BOOT_OUT) $(LOADER_OUT)
@echo "Build Success ==> D.T.OS!"
$(IMG) :
bximage $@ -q -fd -size=1.44
$(BOOT_OUT) : $(BOOT_SRC)
nasm $^ -o $@
dd if=$@ of=$(IMG) bs=512 count=1 conv=notrunc
$(LOADER_OUT) : $(LOADER_SRC)
nasm $^ -o $@
sudo mount -o loop $(IMG) $(IMG_PATH)
sudo cp $@ $(IMG_PATH)/$@
sudo umount $(IMG_PATH)
clean :
$(RM) $(IMG) $(BOOT_OUT) $(LOADER_OUT)
rebuild :
@$(MAKE) clean
@$(MAKE) all
最后將data.img在window下實現
小結
1.Boot需要進行重構保證在512字節內完成功能
2.在匯編程序中盡量確保函數調用前后通用寄存器的狀態不變
3.Boot成功加載Loader后將控制權轉移
4.Loader程序沒有代碼體積上的限制
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。