亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

MXNet中怎么進行超參數調優

小億
84
2024-03-25 13:13:06
欄目: 深度學習

在MXNet中進行超參數調優有多種方法,其中常用的包括Grid Search(網格搜索)、Random Search(隨機搜索)和Bayesian Optimization(貝葉斯優化)等。

  1. Grid Search(網格搜索):Grid Search 是一種窮舉搜索的方法,通過定義一個超參數的取值范圍,對每個超參數進行組合,然后訓練模型并評估性能。可以通過MXNet的GridSearch類來實現。
from mxnet.gluon import nn
from mxnet.gluon.data.vision import transforms
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import data as gdata, loss as gloss
from mxnet import metric as mtr
import mxnet as mx
import random
import time
import sys

grid_search = GridSearch({
    'learning_rate': [0.01, 0.1, 0.5],
    'momentum': [0.9, 0.95, 0.99],
    'batch_size': [32, 64, 128]
})

for params in grid_search:
    net = nn.Sequential()
    net.add(nn.Dense(128, activation='relu'),
            nn.Dense(64, activation='relu'),
            nn.Dense(10))
    net.initialize(init=init.Xavier())
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': params['learning_rate'],
                            'momentum': params['momentum']})
    train(net, train_iter, test_iter, batch_size=params['batch_size'],
          trainer=trainer, num_epochs=num_epochs)
  1. Random Search(隨機搜索):Random Search 是一種隨機搜索的方法,通過在指定的超參數范圍內隨機采樣,然后訓練模型并評估性能。可以通過MXNet的RandomSearch類來實現。
from mxnet.gluon.contrib.model_zoo import get_model
from mxnet.gluon.data import vision
from mxnet.gluon.data.vision import transforms

random_search = RandomSearch({
    'learning_rate': (0.001, 0.1),
    'momentum': (0.5, 0.99),
    'batch_size': (32, 128)
})

for params in random_search:
    net = get_model('resnet18_v1', classes=10)
    net.initialize(init=init.Xavier())
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': params['learning_rate'],
                            'momentum': params['momentum']})
    train(net, train_iter, test_iter, batch_size=params['batch_size'],
          trainer=trainer, num_epochs=num_epochs)
  1. Bayesian Optimization(貝葉斯優化):Bayesian Optimization 是一種基于貝葉斯優化的方法,通過在先前的結果中選擇最有希望的超參數進行下一次探索。可以使用第三方庫如BayesOpt進行Bayesian Optimization。
from bayes_opt import BayesianOptimization

def train_net(learning_rate, momentum, batch_size):
    net = nn.Sequential()
    net.add(nn.Dense(128, activation='relu'),
            nn.Dense(64, activation='relu'),
            nn.Dense(10))
    net.initialize(init=init.Xavier())
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': learning_rate, 'momentum': momentum})
    train(net, train_iter, test_iter, batch_size=batch_size,
          trainer=trainer, num_epochs=num_epochs)
    return accuracy

optimizer = BayesianOptimization(
    f=train_net,
    pbounds={'learning_rate': (0.001, 0.1),
             'momentum': (0.5, 0.99),
             'batch_size': (32, 128)}
)

optimizer.maximize(init_points=5, n_iter=10)
best_params = optimizer.max['params']

0
榆中县| 咸阳市| 夏邑县| 塘沽区| 通许县| 望奎县| 铁岭县| 宁河县| 泽库县| 夏邑县| 黑山县| 观塘区| 榆社县| 肃北| 施秉县| 合江县| 沈阳市| 元谋县| 西安市| 玉溪市| 吴桥县| 富裕县| 永嘉县| 禹城市| 阆中市| 微博| 廊坊市| 江口县| 甘谷县| 绥芬河市| 景东| 赤水市| 枝江市| 乐平市| 阿巴嘎旗| 杭锦后旗| 盐城市| 两当县| 株洲县| 方城县| 祁东县|