亚洲激情专区-91九色丨porny丨老师-久久久久久久女国产乱让韩-国产精品午夜小视频观看

溫馨提示×

怎么使用NLTK庫進行文本分類

小億
91
2024-05-11 17:27:55
欄目: 編程語言

NLTK(Natural Language Toolkit)是一個用于自然語言處理的Python庫,可以用于文本分類等任務。以下是使用NLTK庫進行文本分類的基本步驟:

  1. 導入NLTK庫:
import nltk
  1. 下載NLTK所需的數據:
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
  1. 準備文本數據:
# 示例文本數據
documents = [
    ("This is a good movie", "positive"),
    ("I like this movie", "positive"),
    ("I hate this movie", "negative"),
    ("This is the worst movie ever", "negative")
]
  1. 特征提取:
def document_features(document):
    document_words = set(document)
    features = {}
    for word in word_features:
        features['contains({})'.format(word)] = (word in document_words)
    return features

all_words = nltk.FreqDist(w.lower() for w in nltk.word_tokenize(text) if w.isalpha())
word_features = list(all_words.keys())[:100]
featuresets = [(document_features(d), c) for (d,c) in documents]
  1. 劃分訓練集和測試集:
train_set, test_set = featuresets[:3], featuresets[3:]
  1. 訓練分類器:
classifier = nltk.NaiveBayesClassifier.train(train_set)
  1. 對測試集進行分類預測:
print(nltk.classify.accuracy(classifier, test_set))

通過以上步驟,你可以使用NLTK庫進行文本分類任務,并得到分類準確率。你也可以嘗試使用其他分類器,如SVM、決策樹等,來得到更好的分類結果。

0
温泉县| 留坝县| 上林县| 大方县| 益阳市| 张家口市| 安西县| 嵊州市| 台南县| 岱山县| 墨竹工卡县| 厦门市| 鸡泽县| 南安市| 旺苍县| 台南县| 教育| 宝应县| 舞钢市| 巴南区| 南郑县| 广南县| 楚雄市| 凭祥市| 军事| 平塘县| 大竹县| 淄博市| 洪泽县| 平山县| 忻城县| 廊坊市| 渑池县| 浮山县| 海丰县| 景东| 泗水县| 辛集市| 漳平市| 金塔县| 囊谦县|