在Pytorch中搭建神經網絡通常需要遵循以下步驟:
torch.nn.Module
的類來定義神經網絡的結構,其中包含網絡的層和操作。import torch
import torch.nn as nn
class MyNetwork(nn.Module):
def __init__(self):
super(MyNetwork, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
model = MyNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
outputs = model(inputs)
predictions = torch.argmax(outputs, dim=1)
這就是在Pytorch中搭建自己的神經網絡的基本步驟。您可以根據自己的需求和數據集來調整網絡結構、損失函數和優化器等參數以獲得更好的性能。